One common chemical in sunscreen can have devastating effects on coral reefs. Now, scientists know why.
Sea anemones, which are closely related to corals, and mushroom coral can turn oxybenzone — a chemical that protects people against ultraviolet light — into a deadly toxin that’s activated by light. The good news is that algae living alongside the creatures can soak up the toxin and blunt its damage, researchers report in the May 6 Science.
But that also means that bleached coral reefs lacking algae may be more vulnerable to death. Heat-stressed corals and anemones can eject helpful algae that provide oxygen and remove waste products, which turns reefs white. Such bleaching is becoming more common as a result of climate change (SN: 4/7/20). The findings hint that sunscreen pollution and climate change combined could be a greater threat to coral reefs and other marine habitats than either would be separately, says Craig Downs. He is a forensic ecotoxicologist with the nonprofit Haereticus Environmental Laboratory in Amherst, Va., and was not involved with the study.
Previous work suggested that oxybenzone can kill young corals or prevent adult corals from recovering after tissue damage. As a result, some places, including Hawaii and Thailand, have banned oxybenzone-containing sunscreens.
In the new study, environmental chemist Djordje Vuckovic of Stanford University and colleagues found that glass anemones (Exaiptasia pallida) exposed to oxybenzone and UV light add sugars to the chemical. While such sugary add-ons would typically help organisms detoxify chemicals and clear them from the body, the oxybenzone-sugar compound instead becomes a toxin that’s activated by light.
Anemones exposed to either simulated sunlight or oxybenzone alone survived the length of the experiment, or 21 days, the team showed. But all anemones exposed to fake sunlight while submersed in water containing the chemical died within 17 days. The anemones’ algal friends absorbed much of the oxybenzone and the toxin that the animals were exposed to in the lab. Anemones lacking algae died days sooner than anemones with algae.
In similar experiments, algae living inside mushroom coral (Discosoma sp.) also soaked up the toxin, a sign that algal relationships are a safeguard against its harmful effects. The coral’s algae seem to be particularly protective: Over eight days, no mushroom corals died after being exposed to oxybenzone and simulated sunlight.
It’s still unclear what amount of oxybenzone might be toxic to coral reefs in the wild. Another lingering question, Downs says, is whether other sunscreen components that are similar in structure to oxybenzone might have the same effects. Pinning that down could help researchers make better, reef-safe sunscreens.
“Fungi Fridays” could save a lot of trees — and take a bite out of greenhouse gas emissions. Eating one-fifth less red meat and instead munching on microbial proteins derived from fungi or algae could cut annual deforestation in half by 2050, researchers report May 5 in Nature.
Raising cattle and other ruminants contributes methane and nitrous oxide to the atmosphere, while clearing forests for pasture lands adds carbon dioxide (SN: 4/4/22; SN: 7/13/21). So the hunt is on for environmentally friendly substitutes, such as lab-grown hamburgers and cricket farming (SN: 9/20/18; SN: 5/2/19).
Another alternative is microbial protein, made from cells cultivated in a laboratory and nurtured with glucose. Fermented fungal spores, for example, produce a dense, doughy substance called mycoprotein, while fermented algae produce spirulina, a dietary supplement. Cell-cultured foods do require sugar from croplands, but studies show that mycoprotein produces fewer greenhouse gas emissions and uses less land and water than raising cattle, says Florian Humpenöder, a climate modeler at Potsdam Institute for Climate Impact Research in Germany. However, a full comparison of foods’ future environmental impacts also requires accounting for changes in population, lifestyle, dietary patterns and technology, he says.
So Humpenöder and colleagues incorporated projected socioeconomic changes into computer simulations of land use and deforestation from 2020 through 2050. Then they simulated four scenarios, substituting microbial protein for 0 percent, 20 percent, 50 percent or 80 percent of the global red meat diet by 2050. A little substitution went a long way, the team found: Just 20 percent microbial protein substitution cut annual deforestation rates — and associated CO2 emissions — by 56 percent from 2020 to 2050.
Eating more microbial proteins could be part of a portfolio of strategies to address the climate and biodiversity crises — alongside measures to protect forests and decarbonize electricity generation, Humpenöder says.
When Igor de Almeida moved to Japan from Brazil nine years ago, the transition should have been relatively easy. Both Japan and Brazil are collectivist nations, where people tend to value the group’s needs over their own. And research shows that immigrants adapt more easily when the home and new country’s cultures match.
But to de Almeida, a cultural psychologist now at Kyoto University, the countries’ cultural differences were striking. Japanese people prioritize formal relationships, such as with coworkers or members of the same “bukatsu,” or extracurricular club, for instance, while Brazilian people prioritize friends in their informal social network. “Sometimes I try to find [cultural] similarities but it’s really hard,” de Almeida says.
Now, new research helps explain that disconnect. For decades, psychologists have studied how culture shapes the mind, or people’s thoughts and behaviors, by comparing Eastern and Western nations. But two research groups working independently in Latin America are finding that a cultural framework that splits the world in two is overly simplistic, obscuring nuances elsewhere in the world.
Due to differences in methodology and interpretation, the teams’ findings about how people living in the collectivist nations of Latin America think are also contradictory. And that raises a larger question: Will overarching cultural theories based on East-West divisions hold up over time, or are new theories needed?
However this debate unfolds, cultural psychologists argue that the field must expand. “If you make most of the cultures of the world … invisible,” says Vivian Vignoles, a cultural psychologist at the University of Sussex in England, “you will get all sorts of things wrong.”
Such misconceptions can jeopardize political alliances, business relationships, public health initiatives and general theories for how people find happiness and meaning. “Culture shapes what it means to be a person,” says Stanford University behavioral scientist Hazel Rose Markus. “What it means to be a person guides all of our behavior, how we think, how we feel, what motivates us [and] how we respond to other individuals and groups.” Culture and the mind Until four decades ago, most psychologists believed that culture had little bearing on the mind. That changed in 1980. Surveys of IBM employees taken across some 70 countries showed that attitudes toward work largely depended on workers’ home country, IBM organizational psychologist Geert Hofstede’s wrote in Culture’s Consequences.
Markus and Shinobu Kitayama, a cultural psychologist at the University of Michigan in Ann Arbor, subsequently fleshed out one Hofstede’s four cultural principles: Individualism versus collectivism. Culture does influence thinking, the duo claimed in a now widely cited paper in the 1991 Psychological Review. By comparing people in mostly the East and West, they surmised that living in individualist countries (i.e. Western ones) led people to think independently while living in collectivist countries (the East) led people to think interdependently.
That paper was pioneering at the time, Vignoles says. Before that, with psychological research based almost exclusively in the West, the Western mind had become the default mind. Now, “instead of being only one kind of person in the world, there [were] two kinds of persons in the world.” Latin America: A case study How individualism/collectivism shape the mind now undergirds the field of cross-cultural psychology. But researchers continue to treat the East and West, chiefly Japan and the United States, as prototypes, Vignoles and colleagues say.
To expand beyond that narrow lens, the team surveyed 7,279 participants in 33 nations and 55 cultures. Participants read such statements as “I prefer to turn to other people for help rather than solely rely on myself” and “I consider my happiness separate from the happiness of my friends and family.” They then responded to how well those comments reflected their values on a scale from 1 for “not at all” to 9 for “exactly.”
That analysis allowed the researchers to identify seven dimensions of independence/interdependence, including self-reliance versus dependence on others and emphasis on self-expression versus harmony. Strikingly, Latin Americans were as, or more, independent as Westerners in six out of the seven dimensions, the team reported in 2016 in the Journal of Experimental Psychology: General.
The researchers’ subsequent analysis of four studies comprising 17,255 participants across 53 nations largely reaffirmed that surprising finding. For instance, Latin Americans are more expressive than even Westerners, Vignoles, de Almeida and colleagues report in February in Perspectives in Psychological Science. But that finding violates the common view that people living in collectivist societies suppress their emotions to foster harmony, while people in individualistic countries emote as a form of self-expression. Latin American nations are collectivist, as defined by Hofstede and others, but the people think and behave independently, the team concludes.
Kitayama’s team has a different take: Latin Americans are interdependent, just in a wholly different way than East Asians. Rather than suppressing emotions, Latin Americans tend to express positive, socially engaging emotions to communicate with others, says cultural psychologist Cristina Salvador of Duke University. That fosters interdependence, unlike the way Westerners express emotions to show their personal feelings. Westerners’ feelings can be negative or positive and often have little to do with their social surroundings — a sign of independence.
Salvador, Kitayama and colleagues had more than 1,000 respondents in Chile, Colombia, Mexico, Japan and the United States reflect on various social scenarios, instead of asking explicit questions like Vignoles’ team. For instance, respondents were asked to imagine winning a prize. They then picked what emotions — such as shame, guilt, anger, friendliness or closeness to others — they would express with family and friends.
Respondents from Latin America and the United States both expressed strong emotions, Salvador reported in February at the Society for Personality and Social Psychology conference in San Francisco. But people in the United States expressed egocentric emotions, such as pride, while people in Latin America expressed emotions that emphasize connection with others.
Because Latin America’s high ethnic and linguistic diversity made communication with words difficult, people learned how to communicate in other ways, Kitayama says. “Emotion became a very important means of social communication.”
Decentering the West More research is needed to reconcile those findings. But how should that research proceed? Though a shift to a broader framework has begun, research in cultural psychology still hinges on the East-West binary, researchers from both teams say.
Psychologists who peer review studies for acceptance into scientific journals still “want a mainstream, white, U.S. comparison sample,” Salvador says. “[Often] you need an Asian sample, as well.”
The primacy of the East and West means that psychological differences between those two regions dominate research and discussions. But both teams are expanding the scope of their research despite those challenges.
Kitayama’s team, for instance, maps out how interdependence, which it argues precedes the emergence of independence, might have morphed as it spread around the globe, in a theory paper also presented at the San Francisco conference (SN: 11/7/19). Besides diversity giving way to “expressive interdependence” in Latin America, the team describes “self-effacing interdependence in East Asia” stemming from the communal nature of rice farming, “self-assertive interdependence” in Arab regions arising from the nomadic life and “argumentative interdependence” in South Asia arising from its central role in trade (SN: 7/14/14). This research started with a “West and the rest” mentality, Kitayama says. His work with Markus created an “East-West and the rest” mentality. Now finally, psychologists are grappling with “the rest,” he says. “The time is really ready to expand this [research] to cover the rest of the world.”
De Almeida imagines decentering the West yet further. What if researchers had started off by comparing Japan and Brazil instead of Japan and the United States, he wonders. Instead of the current laser focus on individualism/collectivism, some other defining facet of culture would have likely risen to prominence. “I would say emotional expression, that’s the most important thing,” de Almeida says.
He sees a straightforward solution. “We could increase the number of studies not involving the United States,” he says. “Then we could develop new paradigms.”
If you’ve got milk, you’ve got options. You can lighten your coffee or soak a cookie, ferment a cheese or bestow yourself a mustache. You can float some cereal or mix a shake. Replacing such a versatile substance is a tall order. And yet there is ample reason to pursue alternatives.
Producing a single liter of cow’s milk requires about 9 square meters of land and about 630 liters of water. That’s the area of two king-size beds and the volume of 10.5 beer kegs. The process of making a liter of dairy milk also generates about 3.2 kilograms of greenhouse gases.
With milk’s global popularity, those costs are enormous. In 2015, the dairy sector generated 1.7 billion metric tons of greenhouse gases, roughly 3 percent of human-related greenhouse gas emissions, according to the Food and Agricultural Organization of the United Nations.
Making plant-based milks — including oat, almond, rice and soy — generates about one-third of the greenhouse gases and uses far less land and water than producing dairy milk, according to a 2018 report in Science. Fueled by a growing base of environmentally conscious consumers, a slew of plant-based milks has entered the market. According to SPINS, a company that collects data on natural and organic products, $2.6 billion of plant-based milks were sold in the United States in 2021. That’s a 33 percent growth in dollar sales since 2019. “Food industries have realized that consumers… want change,” says food scientist David McClements of the University of Massachusetts Amherst.
Although plant milks by and large are better for the environment and the climate, they don’t provide the same nutrition. As the iconic dairy campaign of the 1980s said, “Milk, it does a body good.” The creamy beverage contains 13 essential nutrients, including muscle-building protein, immune-boosting vitamin A and zinc, and bone-strengthening calcium and vitamin D. Plant-based milks tend to contain smaller amounts of these nutrients, and even when plant milks are fortified, researchers aren’t yet sure how well the body absorbs those nutrients.
Dairy is very challenging to try and replace, says Leah Bessa, chief science officer of De Novo Dairy, a biotechnology company in Cape Town, South Africa, that produces dairy proteins without the animals. “You don’t really have a good alternative that’s sustainable and has the same nutritional profile and functionality.” Room for improvement What even is milk?
By its classic definition, milk is a fluid that comes from the mammary gland of a female mammal. But Eva Tornberg, a food scientist at Lund University in Sweden who has developed a potato milk, prefers to focus on milk’s chemical structure. That is the essence of its nourishing nature, she says. “It’s an emulsion…many tiny oil droplets that are dispersed in water.”
That emulsion imbues milk with its signature creaminess and makes milk the ideal vehicle for transporting nutrients, McClements notes. The duality of oil and water means milk can carry both water-soluble nutrients, such as riboflavin and vitamin B12, and oil-soluble ones, such as vitamins A and D.
And with the fat content separated into a multitude of oil droplets — rather than a single layer — human digestive enzymes have a vast amount of surface area to react with. This makes the nutrients packed inside the droplets easy and quick to absorb.
Most plant-based milks are also emulsions, McClements says, so they too have the potential to serve as excellent nutrient-delivery systems. But for the most part, plant-based milk producers have focused much more on providing the right flavor and mouthfeel to appeal to consumers’ tastes, he says. “We need much more work with the nutritional aspects.”
What’s missing? When it comes to nutrition, the closest competitor among the plant-based milks available today is probably soy milk, says Megan Lott, a registered dietitian with Healthy Eating Research, a Durham, N.C.-based program of the Robert Wood Johnson Foundation. Soy milk contains almost as much protein as cow milk and that protein is similarly complete — containing all the essential amino acids. “It’s actually approved by the USDA in child nutrition programs and school meal programs as a substitute for dairy milk,” she says.
But soy milks and other plant-based milks fall short on other important nutrients. Parents often think they can give their children one cup of just plant-based milk in place of one cup of cow’s milk, and they’ll be getting everything they need, Lott says. “That’s just not the case.” Vitamin D and calcium — especially important for a growing child — are the hardest nutrients to get when dropping dairy. Most of milk’s other important components can be obtained from a healthy diet of whole grains, vegetables, fruits and lean meats, Lott says. “If you’re a parent looking to find an alternative for your child, it’s probably the calcium and vitamin D … where you should focus your decision.”
Many producers fortify plant-based milks with vitamin D and calcium to rival or exceed the level in dairy milk. But whether the body can absorb those added nutrients is another story. What consumers read on the Nutrition Facts label does not necessarily reflect how much their body will actually be able to absorb and use, Lott says.
That’s because plant-based milks may contain naturally occurring plant molecules that hinder the absorption of nutrients. For example, some plant milks, including oat and soy milks, contain phytic acid, which binds to calcium, iron and zinc and reduces the body’s absorption of these nutrients.
And adding too much of one good thing can backfire. For instance, introducing high levels of calcium into almond milk may interfere with the body’s absorption of vitamin D, McClements and colleagues reported in 2021 in the Journal of Agricultural and Food Chemistry.
More research is needed to better understand how compounds interact in plant milks and how those interactions affect nutrient absorption in the body, McClements says. Homing in on the ideal balance of ingredients will help producers of plant-based milks craft more nutritious products that taste good too, he says. “What we’re trying to do is find that sweet spot.”
There have been suggestions that our solar system might have a tenth planet…. In the April Publications of the Astronomical Society of the Pacific, a mathematician … presents what he says is “some very interesting evidence of a planet beyond Pluto.” The evidence comes from calculations of the orbit of Halley’s comet.
Update The 1972 evidence never yielded a planet, but astronomers haven’t stopped looking — though it became a search for Planet 9 with Pluto’s 2006 switch to dwarf status. In the mid-2010s, scientists hypothesized that the tug of a large planet 500 to 600 times as far from the sun as Earth could explain the peculiar orbits of some objects in the solar system’s debris-filled Kuiper Belt (SN: 7/23/16, p. 7). But that evidence might not stand up to further scrutiny (SN: 3/13/21, p. 9). Researchers using the Atacama Cosmology Telescope in Chile to scan nearly 90 percent of the Southern Hemisphere’s sky had no luck finding the planet, the team reported in December 2021.