Ancient humans used the moon as a calendar in the sky

The sun’s rhythm may have set the pace of each day, but when early humans needed a way to keep time beyond a single day and night, they looked to a second light in the sky. The moon was one of humankind’s first timepieces long before the first written language, before the earliest organized cities and well before structured religions. The moon’s face changes nightly and with the regularity of the seasons, making it a reliable marker of time.

“It’s an obvious timepiece,” Anthony Aveni says of the moon. Aveni is a professor emeritus of astronomy and anthropology at Colgate University in Hamilton, N.Y., and a founder of the field of archaeoastronomy. “There is good evidence that [lunar timekeeping] was around as early as 25,000, 30,000, 35,000 years before the present.”

When people began depicting what they saw in the natural world, two common motifs were animals and the night sky. One of the earliest known cave paintings, dated to at least 40,000 years ago in a cave on the island of Borneo, includes a wild bull with horns. European cave art dating to about 37,000 years ago depicts wild cattle too, as well as geometric shapes that some researchers interpret as star patterns and the moon.

For decades, prehistorians and other archaeologists believed that ancient humans were portraying what they saw in the natural world because of an innate creative streak.
The modern idea that Paleolithic people were depicting nature for more than artistic reasons gained traction at the end of the 19th century and was further developed in the early 20th century by Abbé Henri Breuil, a French Catholic priest and archaeologist. He interpreted the stylistic bison and lions in the cave paintings and carvings of southern France as ritual art designed to bring luck to the hunt.

In the 1960s, a journalist–turned–amateur anthropologist proposed even more practical purposes for these drawings and other artifacts: They were created for telling time.

In the early days of the Apollo space missions, the journalist, Alexander Marshack, was writing a book about how the course of human history culminated in the moon shot. He delved into prehistory, trying to understand the earliest concepts of timekeeping and agriculture (SN: 4/14/79, p. 252).

“I had a profound sense of something missing,” Marshack wrote in his 1972 book, The Roots of Civilization. Formal science, including astronomy and math, apparently had begun “suddenly,” he noted. Same with writing, agriculture, art and the calendar. But surely these cognitive leaps took thousands of years of preparation, Marshack reasoned: “How many thousands was the question.”

To find out, he examined ancient bone carvings and wall art from locations including caves in Western Europe and fishing villages of equatorial Africa. He interpreted what was seen by some as simple dots and dashes or depictions of animals and people as sophisticated tools for keeping track of time — via the moon. Today, some experts support his thesis; others remain unconvinced.
It’s easy enough to keep track of the seasons just by paying attention to the environment, of course. Throughout the world, animals like deer and cattle are pregnant through the winter’s dark privation; they give birth when the leaves appear on trees and when grasses grow tall.

Early humans of 30,000 years ago frequently connected the changes in these “phenophases,” the seasonal stages of flora and fauna, with the appearance of certain stars and the phases of the moon, says science historian and astronomer Michael Rappenglück of the Adult Education Center and Observatory in Gilching, Germany. He refers to early cave depictions as “paleo-almanacs” because they combined time-reckoning with information related to the cycles of life.

As Rappenglück puts it, simply noting the spinning of the seasons would not be enough to keep time. For one thing, flora and fauna change from place to place, and even 30,000 years ago, humans were traveling great distances in search of food. They needed something more constant to help them tell time.

“People carefully watched the course of the moon, noting its position over the natural horizon and the change of its phases,” Rappenglück wrote in the 2015 Handbook of Archaeoastronomy and Ethnoastronomy.

In the 1960s, Marshack, the first to argue that Paleolithic people were connecting the moon with time, sifted through dusty cabinets in French museums, retrieving bone and antler pieces that had been worked by humans. Others had interpreted the etchings on these objects as the by-product of point-sharpening, or maybe, as most before Breuil thought, abstract artworks made by idle hands.

But Marshack saw the earliest examples of sky almanacs. The etchings were numerical and notational, he argued. On a bone shard from a prehistoric settlement called Abri Blanchard in France, dating to 28,000 years ago, he found a pattern of pits, some with commalike curves and some round. He viewed it as a record of lunar cycles.

Deeply excited by the find, Marshack soon brought his conclusions to archaeologists and anthropologists throughout Europe and the United States. Some of these experts were impressed, according to accounts at the time.

Hunters who could figure out when the night would be illuminated by moonlight would have had an “adaptive advantage,” Aveni says. “That is so much what the cave paintings are about,” he says, referring to the tally marks near the animals on the walls of the Chauvet Cave in France and elsewhere.

Regarding Marshack’s speculations about the Blanchard bone shard, paleoanthropologist Ian Tattersall is still unsure. “We know Ice Age European art was highly symbolic, and there is no doubt that [ancient people] perceived symbols all around them in nature. And it is pretty certain that the moon played a huge role in their cosmology, and that they were fully aware of its cycle,” says Tattersall, curator emeritus of human origins at the American Museum of Natural History in New York City. “Beyond that, all bets are off.”

Thirteen notches
In the decades after Marshack published his findings, historians and anthropologists began noticing similar lunar motifs throughout the archaeological record of this time period and afterward, Aveni notes. “There are more than one of these items that have markings on them that might relate to the moon,” he says.

The Venus of Laussel is one extraordinary example. It is a carving of a voluptuous woman, one hand resting on her abdomen, the other raised and holding a bison horn etched with 13 notches. Her face is turned toward the horn. The figure was carved between 22,000 and 27,000 years ago, in a rock-shelter in the Dordogne region of southwestern France.
Some archaeologists now think the 13 notches represent the number of lunar cycles in a solar year — and, approximately, the average number of menstrual cycles. Though modern scientists have debunked any direct connection between the cycles of the moon and human fertility, ancient people would have recognized the parallel timing; the lunar cycle repeats every 29.5 days, roughly the same schedule as the average woman’s menstrual cycle. People of 30,000 years ago could have used the moon and stars to plan their pregnancies, Rappenglück speculates.

Cave paintings in the Dordogne region may be depictions of the lunar and menstrual cycles. Specifically, the Lascaux cave paintings, dating to 17,000 years ago, are best known for their curvy, sweeping depictions of horses and bulls. Beyond the cave entrance, past what is called the Hall of Bulls, is a dead-end passage called the Axial Gallery. Red aurochs, an extinct form of cattle, stand in a group. A huge black bull stands apart from them. Across the gallery, a pregnant horse gallops above a row of 26 black dots. The mare is running toward a massive stag, with front legs invisible behind 13 additional evenly spaced dots.

The animals may represent seasons, Rappenglück suggests. In Europe, bovines calve in the spring; horses both foal and mate in the late spring. The deer rut takes place in early autumn, and the wild goats known as ibex mate around the winter solstice.

To Rappenglück, the dots depict the 13 full moons of the lunar cycle. The 26 dots may roughly represent the days of a sidereal month, or the time it takes the moon to return to the same position in the sky relative to the stars. “The striking row of dots is a kind of a time-unit,” he wrote in 2004.

Critics have said Marshack’s work overinterprets many artifacts from Africa and Europe, some of which contain markings at the limit of naked-eye visibility (SN: 6/9/90, p. 357).

“By modern standards of evidence, he is playing with numerological coincidences,” art historian James Elkins wrote in 1996 in an article that is part critique and part celebration. Elkins noted that Marshack countered his doubters by throwing their uncertainty back at them, arguing that better explanations were lacking.

“Nights were real nights at that time, and Paleolithic people certainly had deep insights into what was going on in the sky,” says Harald Floss, an anthropologist at the University of Tübingen in Germany who studies the origin of art. “But I would not risk saying more.”

Moons that escape their planets could become ‘ploonets’

Meet ploonets: planets of moonish origin.

In other star systems, some moons could escape their planets and start orbiting their stars instead, new simulations suggest. Scientists have dubbed such liberated worlds “ploonets,” and say that current telescopes may be able to find the wayward objects.

Astronomers think that exomoons — moons orbiting planets that orbit stars other than the sun — should be common, but efforts to find them have turned up empty so far (SN Online: 4/30/19). Astrophysicist Mario Sucerquia of the University of Antioquia in Medellín, Colombia and colleagues simulated what would happen to those moons if they orbited hot Jupiters, gas giants that lie scorchingly close to their stars (SN: 7/8/17, p. 4). Many astronomers think that hot Jupiters weren’t born so close, but instead migrated toward their star from a more distant orbit.
As the gas giant migrates, the combined gravitational forces of the planet and the star would inject extra energy into the moon’s orbit, pushing the moon farther and farther from its planet until eventually it escapes, the researchers report June 27 at arXiv.org.

“This process should happen in every planetary system composed of a giant planet in a very close-in orbit,” Sucerquia says. “So ploonets should be very frequent.”

Some ploonets may be indistinguishable from ordinary planets. Others, whose orbits keep them close to their planet, could reveal their presence by changing the timing of when their neighbor planet crosses, or transits, in front of the star. The ploonet should stay close enough to the planet that its gravity can speed or slow the planet’s transit times. Those deviations should be detectable by combining data from planet-hunting telescopes like NASA’s TESS or the now-defunct Kepler, Sucerquia says.
Ploonethood may be a relatively short-lived phenomenon, though, making the worlds more difficult to spot. About half of the ploonets in the researchers’ simulations crashed into either their planet or star within about half a million years. And half of the remaining survivors crashed within a million years.

Even with few visible survivors, ploonets could help explain some bizarre exoplanetary features. Moon debris from such crashes could lead to giant ring systems around planets, like the 37 rings that encircle exoplanet J1407b, the team says.

Or, if the ploonet had an icy surface or an atmosphere before moving close to its star, the star’s heat would evaporate it, giving the ploonet a tail like a comet’s. Evaporating ploonets zipping by with a long light-blocking tail could explain strangely flickering stars like Tabby’s star, Sucerquia says (SN: 12/22/18, p. 9).

“Those structures [rings and flickers] have been discovered, have been observed,” Sucerquia says. “We just propose a natural mechanism to explain [them].”

While the solar system doesn’t have any hot Jupiters, ploonethood may be possible here, too. Earth’s moon is moving slowly away from the Earth, at a rate of about 4 centimeters per year. When it eventually breaks free, “the moon is a potential ploonet,” Sucerquia says — although that won’t happen for about 5 billion years.

The study is a good first step for thinking about what would happen to exomoons in real planetary systems, says planetary astrophysicist Natalie Hinkel of the Southwest Research Institute in San Antonio, who wasn’t involved in the new work. “Nobody’s looked at the problem quite like this,” she says. “It adds to the layers of how complex these systems are.”

Plus, ploonet is “a wonderful name,” Hinkel says. “Normally I sort of eye-roll at these made-up names, but this one is a keeper.”

See how visualizations of the moon have changed over time

Look up at the moon and you’ll see roughly the same patterns of light and shadow that Plato saw about 2,500 years ago. But humankind’s understanding of Earth’s nearest neighbor has changed considerably since then, and so have the ways that scientists and others have visualized the moon.

To celebrate the 50th anniversary of the Apollo 11 moon landing, here are a collection of images that give a sense of how the moon has been depicted over time — from hand-drawn illustrations and maps, to early photographs, to highly detailed satellite images made possible by spacecraft such as NASA’s Lunar Reconnaissance Orbiter.
The images, compiled with help from Marcy Bidney, curator of the American Geographical Society Library at the University of Wisconsin–Milwaukee, show how developments in technology such as the telescope and camera drove ever more detailed views of Earth’s closest celestial companion.

  1. Atlas Coelestis, Johann Gabriel Doppelmayr, 1742
    Ancient Greek philosophers like Plato thought the moon and other celestial bodies revolved around a fixed Earth. This 1742 diagram by German scientist Johann Gabriel Doppelmayr depicts that idea. The thinkers saw the moon as perfect and struggled to explain its dark marks. In 1935, one of the moon’s most conspicuous craters was named after Plato.
  2. Astronomicum Caesareum, Michael Ostendorfer, 1540
    This hand-colored woodcut by German painter Michael Ostendorfer appears in Astronomicum Caesareum, a vast collection of astronomical knowledge compiled by the German author Petrus Apianus and published in 1540. The image is an example of how astronomers in this early Renaissance period began to stylize the moon by giving it a face, Bidney says.

The book also contains more than 20 exquisitely detailed moving paper instruments, or volvelles, that helped predict lunar eclipses, calculate the position of the stars and more.

  1. De Mundo, William Gilbert, ca. 1600
    Created around 1600, this sketch is the oldest known lunar map, and was drawn using the naked eye. William Gilbert, physician to Queen Elizabeth I, imagined that the bright spots were seas and the dark spots land, and gave some features names, such as Regio Magna Orientalis, which translates as “Large Eastern Region” and roughly coincides with the vast lava plain known today as Mare Imbrium.
  2. Sidereus Nuncius, Galileo, 1610
    The telescope made it far easier to see the moon’s topography. By Galileo, these 1610 lunar maps are some of the first published to rely on telescope views. His work supported the Copernican idea that the moon, Earth and other planets revolved around the sun.

Although Galileo’s moon drawings were not the first to rely on telescope observations — English astronomer Thomas Harriot created the first sketch in 1609 — Galileo’s were the first published. These images appeared in his astronomical treatise Sidereus Nuncius.

  1. Selenographia, Johannes Hevelius, 1647
    In 1647, Polish astronomer Johannes Hevelius, published the first lunar atlas, Selenographia. The book contains more than 40 detailed drawings and engravings, including this one, that show the moon in all its phases. Hevelius also included a glossary of 275 named surface features.

To create his images, Hevelius, a wealthy brewer, constructed a rooftop observatory in Gdańsk and fitted it with a homemade telescope that magnified the moon 40 times. Hevelius is credited with founding the field of selenography, the study of the moon’s surface and physical features.

  1. First known lunar photo, John William Draper, 1840
    Photography opened a new way to capture the moon. Taken around 1840 by British-born chemist and physician John William Draper, this daguerreotype is the first known lunar photo. Spots are from mold and water damage.
  2. “Moon over Hastings”, Henry Draper, 1863
    Photos of the moon quickly improved. John William Draper’s son Henry, a physician like his father, also developed a passion for photographing the night sky. He shot this detailed image from his Hastings-on-Hudson observatory in New York in 1863, and went on to become a pioneer in astrophotography.
  3. Lunar Reconnaissance Orbiter, NASA, 2018
    This 2018 image, from NASA’s Lunar Reconnaissance Orbiter, shows the moon’s familiar face in incredible detail. Now we know its marks are evidence of a violent past and include mountain ranges, deep craters and giant basins filled with hardened lava.
  4. Lunar farside, Chang’e-4, 2019
    Countless images now exist of the moon’s illuminated face, but only relatively recently have astronomers managed to capture shots of the moon’s farside, using satellites. Then in February, China’s Chang’e-4 lander and rover became the first spacecraft to land there. This is the first image captured by the probe.

This solar-powered device produces energy and cleans water at the same time

By mounting a water distillation system on the back of a solar cell, engineers have constructed a device that doubles as an energy generator and water purifier.

While the solar cell harvests sunlight for electricity, heat from the solar panel drives evaporation in the water distiller below. That vapor wafts through a porous polystyrene membrane that filters out salt and other contaminants, allowing clean water to condense on the other side. “It doesn’t affect the electricity production by the [solar cell]. And at the same time, it gives you bonus freshwater,” says study coauthor Peng Wang, an engineer at King Abdullah University of Science and Technology in Thuwal, Saudi Arabia.
Solar farms that install these two-for-one machines could help meet the increasing global demand for freshwater while cranking out electricity, researchers report online July 9 in Nature Communications.

Using this kind of technology to tackle two big challenges at once “is a great idea,” says Jun Zhou, a materials scientist at Huazhong University of Science and Technology in Wuhan, China, not involved in the work.

In lab experiments under a lamp whose illumination mimics the sun, a prototype device converted about 11 percent of incoming light into electricity. That’s comparable to commercial solar cells, which usually transform some 10 to 20 percent of the sunlight they soak up into usable energy (SN: 8/5/17, p. 22). The researchers tested how well their prototype purified water by feeding saltwater and dirty water laced with heavy metals into the distiller. Based on those experiments, a device about a meter across is estimated to pump out about 1.7 kilograms of clean water per hour.

“It’s really good engineering work,” says George Ni, an engineer who worked on water distillation while a graduate student at MIT, but was not involved in the new study.
“The next step is, how are you going to deploy this?” Ni says. “Is it going to be on a roof? If so, how do you get a source of water to it? If it’s going to be [floating] in the ocean, how do you keep it steady” so that it isn’t toppled by waves? Such practical considerations would need to be hammered out for the device to enter real-world use.

Tiny glasses help reveal how praying mantises can see in 3-D

A praying mantis depends on precision targeting when hunting insects. Now, scientists have identified nerve cells that help calculate the depth perception required for these predators’ surgical strikes.

In addition to providing clues about insect vision, the principles of these cells’ behavior, described June 28 in Nature Communications, may also lead to advances in robot vision or other automated systems.

So far, praying mantises are the only insects known to be able to see in 3-D. In the new study, neuroscientist Ronny Rosner of Newcastle University in England and colleagues used a tiny theater that played praying mantises’ favorite films — moving disks that mimic bugs. The disks appeared in three dimensions because the insects’ eyes were covered with different colored filters, creating minuscule 3-D glasses.
As a praying mantis watched the films, electrodes monitored the behavior of individual nerve cells in the optic lobe, a brain structure responsible for many aspects of vision. There, researchers found four types of nerve cells that seem to help merge the two different views from each eye into a complete 3-D picture, a skill that human vision cells use to sense depth, too.

One cell type called a TAOpro neuron possesses three elaborate, fan-shaped bundles that receive incoming visual information. Along with the three other cell types, TAOpro neurons are active when each eye’s view of an object is different, a mismatch that’s needed for depth perception.

The details of the various types of nerve cells, and how they might receive, combine and send visual information, suggest that these insects’ vision may be more sophisticated than some scientists had thought, the team writes. And the principles guiding praying mantis depth perception may be useful to researchers working on improving machine vision, perhaps allowing artificial systems to better sense the depths of objects.

Celebrate the moon landing anniversary with books that go beyond the small step

Astronomy lovers are not the only ones excited about the 50th anniversary of the moon landing. Publishers are also taking note, serving up a pile of books to mark the occasion.

Are you looking for a general overview of the birth of the U.S. space program? Would you rather geek out on the technical details of the Apollo missions? How about flipping through a collection of photographs from the era? Science News staff took a look at the offerings and picked out a few favorites to help you decide. There’s something for everyone in the list below.
For history aficionados
James Donovan
Little, Brown and Co., $30

This retelling of the space race begins with the launch of the Soviet Union’s Sputnik satellite in 1957 and culminates in the historic Apollo 11 mission 12 years later. The book offers insights into the personalities of the astronauts, engineers and others who made the U.S. space program a success.
For detail-obsessed NASA fans
Charles Fishman
Simon & Schuster, $29.99

Getting to the moon demanded a million hours of work for each hour spent in space, this book argues. Accordingly, the story focuses on the engineers, coders, project managers and others who toiled to get the Apollo program off the ground.
For anyone who ever dreamed of being an astronaut
J.L. Pickering and John Bisney
Univ. of Florida, $45

Packed with hundreds of photos, some published for the first time, this coffee-table book reads like a photo album of the Apollo 11 mission. The images focus on candid moments from astronaut training, as well as the excitement of liftoff, the historic landing and the return home of the three men.

For readers ready for a sober view of Apollo
Roger D. Launius
Smithsonian Books, $27.95

A space historian takes the Apollo program off its pedestal to examine it from multiple angles: as a cog in the Cold War political machine, an engineering endeavor riddled with as many failures as feats of glory and an iconic cultural moment. The book explores both positive and negative viewpoints on the U.S. moonshot project from scientists, politicians, the media and the public during the space race and beyond.

For fans of graphic novels
Jonathan Fetter-Vorm
Hill and Wang, $35

Colorful and detailed, the comic-style illustrations in this book of graphic nonfiction bring the moon landing to life. Much of the astronauts’ dialog is based on real recordings, making the book feel particularly authentic.

For self-improvement buffs
Richard Wiseman
TarcherPerigee, $26

A psychologist takes practical lessons from the Apollo era and suggests ways to apply them to everyday problems, from changing careers to raising a family.

For space enthusiasts
David Baker
Arcturus Publishing Limited, $19.99

A former NASA engineer uses photographs, illustrations, blueprints and other documents to guide readers through a concise history of the space race and the Apollo program, from the beginnings of rocket science to the successful return home of the Apollo 11 crew.

For history wonks with a soft spot for psychology
Basil Hero
Grand Central Publishing, $22

The Apollo astronauts rarely gave personal interviews. But now that they’re getting older, the astronauts are starting to get introspective. This book distills conversations with the 12 lunar voyagers still alive into general wisdom on conquering fear and appreciating life.

For photography lovers
Deborah Ireland
Ammonite Press, $14.95

This slim book offers an offbeat take on the mission to the moon, telling the story of the Apollo program through the development of the Hasselblad cameras that Neil Armstrong and Buzz Aldrin used to document their time on the lunar surface.
Science News is a participant in the Amazon Services LLC Associates Program. Please see our FAQ for more details.