Shenzhou-14 taikonauts meet press for first time since returning to Earth

Seventy-five days after having returned to the ground, the Shenzhou-14 crew members met the press on Friday and were in good spirits. They were also in good physical and mental shape, said health experts at the press conference, noting that they have now moved into the recovery observation stage and will be able to return to normal soon.

The recovery of normal body function for the taikonauts after they returned from space consists of three stages - quarantine, convalescence and observation - according to health experts speaking at the press conference on Friday.

The Shenzhou-14 crew has completed the first two stages, showing a stable emotional status and good mental condition, and their body weight has stabilized at pre-flight level. The muscle strength, endurance and cardiorespiratory reserves have been further restored, achieving the expected results.

They have now moved into the third stage of recovery observation. After an overall evaluation, the three taikonauts will be able to return to normal training and work.

After concluding their six-month stay at the China Space Station and completing the first direct handover in orbit in the country's history, Chen Dong, Liu Yang and Cai Xuzhe, the three taikonauts of the Shenzhou-14 safely returned to Earth on December 4, 2022.

It marked the first return mission after the completion of the China Space Station's T-shape basic structure.

Local govts support state-owned enterprises expanding hiring of graduates, expected to help alleviate unemployment pressure

Many localities have issued policies to encourage state-owned enterprises to play an exemplary role in stabilizing employment and expand recruitment of college graduates, with some provinces and cities requiring no less than half of the hiring quota at state-owned enterprises be dedicated to college graduates.

The office of the Guangdong Provincial People's Government recently published a notice on optimizing and adjusting stable employment policies and measures to promote development and benefit people's livelihood. Showing clear support for state-owned enterprises expanding the scale of recruitment, the notice pointed out that the number of new college graduates recruited by state-owned enterprises in the province this year should be no lower than that of 2022.

Additionally, East China's Anhui Province also issued a notice requiring state-owned enterprises to recruit at least 50 percent of fresh graduates to ensure that the number of college graduates accepted by state-owned enterprises remains stable.

Besides this, the provinces of Hunan, Gansu and Jiangxi have made similar notices. Among them, Central China's Hunan Province requires that provincial state-owned enterprises accept more than 4,700 graduates, while Northwest China's Gansu requires provincial state-owned enterprises to recruit more than 5,000 college graduates in 2023. Meanwhile, provincial state-owned enterprises funded and supervised by the Jiangxi government are set to recruit no less than 5,000 college graduates this year.

The number of college graduates is expected to reach 11.58 million before the end of 2023, an increase of 820,000, according to estimates by China's Ministry of Education. 

South China's Hainan Province proposed in July that state-owned enterprises should play a role in attracting young employees and ensure that no less than 1,000 college graduates are recruited by the end of 2023, while East China's Fujian Province is requiring the implementation of a one-time increase at state-owned enterprises to ensure that the number of college graduates recruited exceeds that of 2022.

An employee at PetroChina's Beijing branch surnamed Li told the Global Times on Sunday that more than 80 percent of new hires at the branch office in 2023 have been graduates. Moreover, a staff member surnamed Zhao with the Industrial and Commercial Bank of China's research and development center in Beijing told the Global Times that the recruitment rate of graduates at the company in 2023 reached 90 percent.

The demand for state-owned enterprises to expand the scale of recruitment is in response to graduate demand and aims to alleviate the current problem of comparatively low youth employment, Xiong Bingqi, director of the 21st Century Education Research Institute in Beijing, told the Global Times on Sunday. 

According to Xinhua News Agency, as of August 11, the number of college graduates recruited by central enterprises and state-owned enterprises under the national asset supervision system has exceeded the same period in 2022. With the summer recruitment of state-owned enterprises gradually underway, it is expected that the recruitment volume will continue to increase in the future.

The State-owned Assets Supervision and Administration Commission of the State Council has also made arrangements for the recruitment of college graduates by state-owned enterprises in 2024 at a meeting held in July.

The meeting required central enterprises and local state-owned enterprises to strive to complete the recruitment plan for the 2024 college graduates by the end of August, and gradually provide a batch of high-quality positions in September and October, in order to identify a group of high-quality target candidates as early as possible.

According to the Xinhua News Agency, as of August 11, the number of college graduates recruited by state-owned enterprises under the national asset supervision system has exceeded the same period in 2022. With the summer recruitment of state-owned enterprises gradually underway, it is expected that recruitment volume will continue to increase in the future.

The State-owned Assets Supervision and Administration Commission of the State Council has made arrangements for the recruitment of college graduates by state-owned enterprises in 2024 at a meeting held in July.

The meeting required central and local state-owned enterprises to strive to complete recruitment plans for the 2024 college graduates by the end of August, and gradually provide a batch of high-quality positions in September and October, in order to identify a group of high-quality target candidates as early as possible.

Hubble telescope snaps stunning pic for its 26th birthday

Time to add another gorgeous space photo to the Hubble Space Telescope’s list of greatest hits. For the orbiting observatory’s 26th anniversary in space, astronomers snapped a picture of the Bubble Nebula, a seven-light-year-wide pocket of gas being blown away by a blazing massive star about 7,100 light-years away in the constellation Cassiopeia.

The star responsible for the bubble is young, just 4 million years old, and about 45 times as massive as our sun. It is so hot and bright that it launches its own gas into space at more than 6 million kilometers per hour. The vibrant colors in the nebula represent the elements oxygen, hydrogen and nitrogen.

Hubble launched April 24, 1990, aboard the space shuttle Discovery. A series of visits by astronauts have kept the aging telescope’s suite of cameras, spectrometers and ancillary equipment up-to-date and operating well into its third decade.

Limestone world gobbled by planet-eating white dwarf

SAN DIEGO — A remote planet — the first with hints of a limestone shell — has been shredded by its dead sun, a new study suggests.

A generous heaping of carbon is raining down on a white dwarf, the exposed core of a dead star, astrophysicist Carl Melis of the University of California, San Diego said June 13 at a meeting of the American Astronomical Society. The carbon — along with a dash of other elements such as calcium, silicon and iron — is probably all that remains of a rocky planet, torn apart by its dying sun’s gravity. Many other white dwarfs show similar signs of planetary cannibalism (SN Online: 10/21/15), but none are as flooded with carbon atoms as this one.

A planet slathered in calcium carbonate, a mineral found in limestone, could explain the shower of carbon as well as the relative amounts of other elements, said Melis. He and Patrick Dufour, an astrophysicist at the University of Montreal, estimate that calcium carbonate could have made up to 9 percent of the doomed world’s mass.

While a limestone-encrusted world is a first, it’s not shocking, says Melis. The recipe for calcium carbonate is just carbon and calcium in the presence of water. “If you have those conditions, it’s going to form,” he says.

“The real interesting thing is the carbon,” Melis adds. Carbon needs to be frozen — most likely as carbon dioxide — to be incorporated into a forming planet. But CO2 freezes far from a star, beyond where researchers suspect rocky planets are assembled. A limestone planet could have formed in an unexpected place and later wandered in while somehow retaining its carbon stores in the warm environs closer to its sun. Or the carbon might have been delivered to the world after it formed. But, Melis says, it’s not clear how either would happen.

Courts’ use of statistics should be put on trial

The Rev. Thomas Bayes was, as the honorific the Rev. suggests, a clergyman. Too bad he wasn’t a lawyer. Maybe if he had been, lawyers today wouldn’t be so reluctant to enlist his mathematical insights in the pursuit of justice.

In many sorts of court cases, from whether talcum powder causes ovarian cancer to The People v. O.J. Simpson, statistics play (or ought to play) a vital role in evaluating the evidence. Sometimes the evidence itself is statistical, as with the odds of a DNA match or the strength of a scientific research finding. Even more often the key question is how evidence should be added up to assess the probability of guilt. In either circumstance, the statistical methods devised by Bayes are often the only reasonable way of drawing an intelligent conclusion.

Yet the courts today seem suspicious of statistics of any sort, and not without reason. In several famous cases, flawed statistical reasoning has sent innocent people to prison. But in most such instances the statistics applied in court have been primarily the standard type that scientists use to test hypotheses (producing numbers for gauging “statistical significance”). These are the same approaches that have been so widely criticized for rendering many scientific results irreproducible. Many experts believe Bayesian statistics, the legacy of a paper by Bayes published posthumously in 1763, offers a better option.

“The Bayesian approach is especially well suited for a broad range of legal reasoning,” write mathematician Norman Fenton and colleagues in a recent paper in the Annual Review of Statistics and Its Application.

But Bayes has for the most part been neglected by the legal system. “Outside of paternity cases its impact on legal practice has been minimal,” say Fenton, Martin Neil and Daniel Berger, all of the School of Electronic Engineering and Computer Science at Queen Mary University London.

That’s unfortunate, they contend, because non-Bayesian statistical methods have severe shortcomings when applied in legal contexts. Most famously, the standard approach is typically misinterpreted in a way known as the “prosecutor’s fallacy.”

In formal logical terms, the prosecutor’s fallacy is known as “the error of the transposed conditional,” as British pharmacologist David Colquhoun explains in a recent blog post. Consider a murder on a hypothetical island, populated by 1,000 people. Police find a DNA fragment at the crime scene, a fragment that would be found in only 0.4 percent of the population. For no particular reason, the police arrest Jack and give him a DNA test. Jack’s DNA matches the crime scene fragment, so he is charged and sent to trial. The prosecutor proclaims that since only 0.4 percent of innocent people have this DNA fragment, it is 99.6 percent certain that Jack is the killer — evidence beyond reasonable doubt.
But that reasoning is fatally (for Jack) flawed. Unless there was some good reason to suspect Jack in the first place, he is just one of 1,000 possible suspects. Among those 1,000, four people (0.4 percent) should have the same DNA fragment found at the crime scene. Jack is therefore just one of four possibilities to be the murderer — so the probability that he’s the killer is merely 25 percent, not 99.6 percent.

Bayesian reasoning averts this potential miscarriage of justice by including the “prior probability” of guilt when calculating the probability of guilt after the evidence is in.

Suppose, for instance, that the crime in question is not murder, but theft of cupcakes from a bakery employing 100 people. Security cameras reveal 10 employees sneaking off with the cupcakes but without a good view of their identities. So the prior probability of any given employee’s guilt is 10 percent. Police sent to investigate choose an employee at random and conduct a frosting residue test known to be accurate 90 percent of the time. If the employee tests positive, the police might conclude there is therefore a 90 percent probability of guilt. But that’s another example of the prosecutor’s fallacy — it neglects the prior probability. Well-trained Bayesian police would use the formula known as Bayes’ theorem to calculate that given a 10 percent prior probability, 90 percent reliable evidence yields an actual probability of guilt of only 50 percent.

You don’t even need to know Bayes’ formula to reason out that result. If the test is 90 percent accurate, it will erroneously identify nine out of the 90 innocent employees as guilty, and it would identify only nine out of the 10 truly guilty employees. If the police tested all 100 people, then, 18 would appear guilty, but nine of those 18 (half of them) would actually be innocent. So a positive frosting test means only a 50 percent chance of guilt. Bayesian math would in this case (and in many real life cases) prevent a rush to injustice.

“Unfortunately, people without statistical training — and this includes most highly respected legal professionals — find Bayes’ theorem both difficult to understand and counterintuitive,” Fenton and colleagues lament.

One major problem is that real criminal cases are rarely as simple as the cupcake example. “Practical legal arguments normally involve multiple hypotheses and pieces of evidence with complex causal dependencies,” Fenton and colleagues note. Adapting Bayes’ formula to complex situations is not always straightforward. Combining testimony and various other sorts of evidence requires mapping out a network of interrelated probabilities; the math quickly can become much too complicated for pencil and paper — and, until relatively recently, even for computers.

“Until the late 1980s there were no known efficient computer algorithms for doing the calculations,” Fenton and colleagues point out.

But nowadays, better computers — and more crucially, better algorithms — are available to compute the probabilities in just the sorts of complicated Bayesian networks that legal cases present. So Bayesian math now provides the ideal method for weighing competing evidence in order to reach a sound legal judgment. Yet the legal system seems unimpressed.

“Although Bayes is the perfect formalism for this type of reasoning, it is difficult to find any well-reported examples of the successful use of Bayes in combining diverse evidence in a real case,” Fenton and coauthors note. “There is a persistent attitude among some members of the legal profession that probability theory has no role in the courtroom.”

In one case in England, in fact, an appeals court denounced the use of Bayesian calculations, asserting that members of the jury should apply “their individual common sense and knowledge of the world” to the evidence presented.

Apart from the obvious idiocy of using common sense to resolve complex issues, the court’s call to apply “knowledge of the world” to the evidence is exactly what Bayesian math does. Bayesian reasoning provides guidance for applying prior knowledge properly in assessing new knowledge (or evidence) to reach a sound conclusion. Which is what the judicial system is supposed to do.

Bayesian statistics offers a technical tool for avoiding fallacious reasoning. Lawyers should learn to use it. So should scientists. And then maybe then someday justice will be done, and science and the law can work more seamlessly together. But as Fenton and colleagues point out, there remain “massive cultural barriers between the fields of science and law” that “will only be broken down by achieving a critical mass of relevant experts and stakeholders, united in their objectives.”

Single-atom magnets store bits of data

NEW ORLEANS — ­The tiniest electronic gadgets have nothing on a new data-storage device. Each bit is encoded using the magnetic field of a single atom — making for extremely compact data storage, although researchers have stored only two bits of data so far.

“If you can make your bit smaller, you can store more information,” physicist Fabian Natterer of the École Polytechnique Fédérale de Lausanne in Switzerland said March 16 at a meeting of the American Physical Society. Natterer and colleagues also reported the result in the March 9 Nature.
Natterer and colleagues created the minuscule magnetic bits using atoms of holmium deposited on a surface of magnesium oxide. The direction of each atom’s magnetic field served as the 1 or 0 of a bit, depending on whether its north pole was pointing up or down.

Using a scanning tunneling microscope, the scientists could flip an atom’s magnetic orientation to switch a bit from 0 to 1. To read out the data, the researchers measured the current running through the atom, which depends on the magnetic field’s orientation. To ensure that the change in current observed after flipping a bit was due to a reorientation of the atom’s magnetic field, the team added bystander iron atoms to the mix and measured how the holmium atoms’ magnetic fields affected the iron atoms.

The work could lead to new hard drives that store data at much greater densities than currently possible. Today’s technologies require 10,000 atoms or more to store a single bit of information.

Natterer also hopes to use these mini magnets to construct materials with fine-tuned magnetic properties, building substances a single atom at a time. “You can play with them. It’s like Lego,” he says.

Pollution regulations help Chesapeake Bay seagrass rebound

Underwater grasses are growing back in the Chesapeake Bay. The plants now carpet three times as much real estate as in 1984, thanks to more than 30 years of efforts to reduce nitrogen pollution. This environmental success story shows that regulations put in place to protect the bay’s health have made a difference, researchers report the week of March 5 in Proceedings of the National Academy of Sciences.

Rules limiting nutrient runoff from farms and wastewater treatment plants helped to decrease nitrogen concentrations in the bay by 23 percent since 1984. That decline in nitrogen has allowed the recovery of 17,000 hectares of grasses, the new study shows — enough to cover roughly 32,000 football fields.
“This is one of the best examples we have of linking long-term research data with management to show how important that is in restoring this critical habitat,” says Karen McGlathery, an environmental scientist at the University of Virginia in Charlottesville who wasn’t involved in the research. ”I don’t know of any other system that’s so large and so complicated where these connections have been made.”

The bay’s aquatic vegetation, including seagrasses and freshwater grasses, is an important part of coastal ecosystems, says study coauthor Jonathan Lefcheck, a marine ecologist at the Bigelow Laboratory for Ocean Sciences in East Boothbay, Maine. Beds of underwater grasses act as nurseries that shelter young fish and aquatic invertebrates. The plants clean the water by trapping particulates, and stabilize shorelines by preventing erosion. But the once-lush grasses began dying off in the 1950s when the region’s human population boomed, and cities and farms dumped increasing amounts of nitrogen and other nutrients into the bay.

In the late 1970s and early 1980s, state and federal agencies took action, limiting the amount of nutrients that could enter the bay from farms, water treatment facilities and other sources. Those groups also instituted programs to monitor the bay’s health, building up the stockpile of information that Lefcheck and his colleagues have now analyzed.

The researchers looked at aerial surveys of the bay, data on water temperature and nutrient levels, as well as land and fertilizer use. Using mathematical equations to test which variables had the biggest impact on seagrass regrowth, the team pinned down nitrogen reduction as the driving force. That makes sense: Too much nitrogen in water promotes the growth of plankton, which can block sunlight, and algae, which can settle on the grass blades and smother them.
Now, though, researchers are seeing just the opposite. Grasses need clean water to get a foothold, but once they settle in, they “modify their own environment and make it better,” Lefcheck says. “Once you get a little bit established, it can take off.”

Hospital admissions show the opioid crisis affects kids, too

As I’ve been reporting a story about the opioid epidemic, I’ve sorted through a lot of tragic numbers that make the astronomical spike in deaths and injuries related to the drugs feel more real.

The rise in the abuse of opioids — powerfully addictive painkillers — is driven by adults. But kids are also swept up in the current, a new study makes clear. The number of children admitted to pediatric intensive care units at hospitals for opioid-related trouble nearly doubled between 2004 and 2015, researchers report in the March Pediatrics.
Researchers combed through medical records from 46 hospitals around the United States, looking for opioid-related reasons for admission to the hospital. When the researchers looked at children who landed in pediatric intensive care units for opioid-related crises, the numbers were grim, nearly doubling. In the period including 2004 to 2007, 367 children landed in the PICU for opioid-related trouble. In the period including 2012 to 2015, that number was 643. (From 2008 to 2011, 554 kids were admitted to the PICU for opioid-related illnesses.)
Most opioid-related hospital admissions were for children ages 12 to 17, the researchers found. The available stats couldn’t say how many of those events were accidental ingestions versus intentional drug use. (Though for older kids, there’s a sliver of good news from elsewhere: Prescription opioid use among teenagers is actually down, a recent survey suggests.)
But about a third of the hospitalizations were for children younger than 6. And among these young kids, about 20 percent of the poisonings involved methadone, a drug that’s used to treat opioid addiction. That means that these young kids are getting into adults’ drugs (illicit or prescribed) and accidentally ingesting them.

Lots of parents don’t store their prescription opioid painkillers safely away from their young children, a survey last year suggests. Drugs, prescription or otherwise, should be kept out of sight and out of reach, ideally locked away. Some kids are great climbers, and some are crafty bottle openers who can, with persistence, work around supposedly child-resistant packaging.

These are tips for everyone living with small kids — not just those who may have opioids in the house. Children are curious, persistent and, sadly, extra vulnerable to powerful drugs, which means that we should all do our best to keep them away from these potentially dangerous drugs.