How living in a pandemic distorts our sense of time

Time hasn’t made much sense since spring 2020 for many people, myself included. In February 2020, during the Before Times, my family traveled to Barcelona, a relatively carefree trip that now feels like a lifetime ago. Other times, I feel like I blinked, and three years vanished. How can my son be starting fifth grade? He was a second grader just a minute ago.

Welcome to “blursday.” Back when the pandemic started, the term hit the zeitgeist. The word captured that sense of time disintegrating as our worlds and routines turned upside down (SN: 9/14/20). Days melted together, then weeks, then years.

As people began wondering about why time felt so out of whack, Simon Grondin, a psychologist at Laval University in Quebec City, and colleagues penned a theory paper seeking to explain the phenomenon. Our time is typically punctuated by events, such as dinner dates or daily commutes, Grondin and his team wrote in October 2020 in Frontiers in Psychology. Such events provide temporal landmarks. When those landmarks disappear, days lose their identities. Time loses its definition.
Since the initial shutdowns, cognitive neuroscientists and psychologists have been scrambling to document people’s changing relationship with the clock. Early findings from those efforts now confirm that the pandemic did lead many people worldwide to experience distortions in their perception of time.

For instance, two surveys of more than 5,600 people taken during the first six months of the pandemic in the United States showed that roughly two-thirds of respondents reported feeling strangely out of sync. Days felt as if they were blurring together, the present loomed overly large and the future felt uncertain, researchers reported in August in Psychological Trauma: Theory, Research, Practice and Policy.

“All of a sudden everything went on stop.… We could not be the people we were used to being in the world anymore,” says health psychologist Alison Holman of the University of California, Irvine.

For some people, distortions in time may feel like a strange, somewhat unsettling phenomenon, but one they can shake off. For others, the trauma of the past few years combined with this weird perception of time is a worrisome mix: They could be at risk of lingering mental health problems, Holman says.

Those who reported greater feelings of time distortion, and thus may be at higher risk of developing mental health problems, included participants ages 18 to 29 and women. Previous life experience, including preexisting mental health challenges and high levels of lifetime stress or trauma, also heightened one’s likelihood of feeling out of sync.
Holman first observed how a warped sense of time can hurt people’s well-being as a graduate student in the 1990s. For her dissertation, she interviewed survivors of the southern California fires of 1993 within days of the fires’ onset. She found that two years later, the individuals who had lost their sense of time during the fires still reported feeling greater distress than those who had largely kept their temporal bearings.

“People who experienced temporal disintegration … got stuck in that past experience. They couldn’t put together the flow from past to present to future,” she says.

Now Holman hopes that measuring how much people feel like time is falling apart during the pandemic might provide an early indicator of who might need help with recovery.

Other recent research during the pandemic suggests that those experiencing time as moving more slowly seem to struggle with greater mental distress than those who experience time as moving fast. For instance, respondents who reported that time felt like it was going very slowly also reported higher levels of loneliness, researchers reported in August in Nature Human Behaviour.

In a similar line of work, experimental psychologist Ruth Ogden of Liverpool John Moores University in England and colleagues are seeking to understand how people might eventually remember the pandemic, and what that could mean for recovery. Ogden and her team asked almost 800 respondents in the United Kingdom to reflect on the start of the pandemic a year after it started.

Only 9 percent said the preceding 12 months felt precisely like a year, while 34 percent said that time felt shorter, the researchers wrote in July in PLOS One. Most respondents, 57 percent, said that the preceding 12 months felt longer than a year.
When a traumatic event feels long in hindsight, people may feel that the trauma is much closer in the rearview mirror than it is in reality. Such negative emotions could lengthen people’s recovery from the pandemic, Ogden and her team suspect. Remembering “a longer pandemic may feel more recent and thus more present,” the team writes.

Mindfulness training that brings people back to the present is one promising way to overcome distortions in time perception, says Olivier Bourdon, a psychologist at the University of Quebec in Montreal (SN: 9/26/22).

But unlike more finite traumas, such as wildfires and mass shootings, the pandemic is not yet in the rearview mirror. Many people are stuck not in the past but a sort of liminal present. While the answers for how to treat people in this instance are far from clear, Bourdon says the key is helping people knit together their past, present and future selves. “If you’re stuck in a specific time perspective, it’s bad for health,” he says.

Helping people rebuild a new vision for the future is especially crucial for well-being, research suggests. People must, Holman says, “have some sense of tomorrow.”

Can’t comb your kid’s hair? This gene may be to blame

The flurry of frizzy-hair e-mails began in 2016.

Human geneticist Regina Betz of University Hospital Bonn in Germany and her team had just linked three genes to a rare disorder with eye-catching symptoms: silvery, spangly, spun glass hair that just will not lie flat. Called uncombable hair syndrome, patients can have dry, shiny strands that stand away from the scalp like a cloud of dandelion fluff. Only about 100 cases had ever been reported.

But after the study, which looked at 18 cases, people from all over the world reached out. “They said, ‘Oh, I have a child like this’ or, ‘Oh, I looked exactly like that as a child,’” says study coauthor Buket Basmanav, a geneticist also at University Hospital Bonn. “Regina said, ‘Send us your samples.’”
Now, the team has analyzed DNA samples from 107 people with uncombable hair syndrome. Variants of just a single gene accounted for 71 percent of cases, the researchers report August 31 in JAMA Dermatology.

The gene, PADI3, encodes an enzyme involved in hair shaft formation. Mutations in PADI3 can disrupt the process, tinkering with the hair’s structure. In people with the syndrome, the hair shaft is grooved, like “a paper straw that has collapsed in on itself,” says Gillian Westgate, a hair biologist at the University of Bradford in England who was not involved in the study.
Basmanav and her colleagues also linked nearly 4 percent of the cases to variants of TGM3 or TCHH, the two other hair shaft genes that the team had previously studied. Nearly a quarter of the cases in the new study remain genetically unexplained.

The work could help doctors diagnose the disorder, which often improves with age and isn’t typically tied to health problems. Genetically testing kids with the unusually lofty locks might ease the minds of parents worried that their child’s poufy ‘do is a sign of something more serious, Westgate says.

A diagnosis of uncombable hair syndrome can be a relief, Basmanav adds, because “we don’t expect any additional symptoms to show up.”

A carbon footprint life cycle assessment can cut down on greenwashing

Today, you can buy a pair of sneakers partially made from carbon dioxide pulled out of the atmosphere. But measuring the carbon-reduction benefits of making that pair of sneakers with CO2 is complex. There’s the fossil fuel that stayed in the ground, a definite carbon savings. But what about the energy cost of cooling the CO2 into liquid form and transporting it to a production facility? And what about when your kid outgrows the shoes in six months and they can’t be recycled into a new product because those systems aren’t in place yet?

As companies try to reduce their carbon footprint, many are doing life cycle assessments to quantify the full carbon cost of products, from procurement of materials to energy use in manufacturing to product transport to user behavior and end-of-life disposal. It’s a mind-bogglingly difficult metric, but such bean-counting is needed to hold the planet to a livable temperature, says low-carbon systems expert Andrea Ramirez Ramirez of the Delft University of Technology in the Netherlands.
Carbon accounting is easy to get wrong, she says. Differences in starting points for determining a product’s “lifetime” or assumptions about the energy sources can all affect the math.

Carbon use can be reduced at many points along the production chain—by using renewable energy in the manufacturing process, for instance, or by adding atmospheric CO2 to the product. But if other points along the chain are energy-intensive or emit CO2, she notes, the final tally may show a positive rather than a negative number.

A product is carbon negative only when its production actually removes carbon from the environment, temporarily or permanently. The Global CO2 Initiative, with European and American universities, has created a set of LCA guidelines to standardize measurement so that carbon accounting is consistent and terms such as “carbon neutral” or “carbon negative” have a verifiable meaning.
In the rush to create products that can be touted as fighting climate change, however, some firms have been accused of “greenwashing” – making products or companies appear more environmentally friendly than they really are. Examples of greenwashing, according to a March 2022 analysis by mechanical engineers Grant Faber and Volker Sick of the University of Michigan in Ann Arbor include labeling plastic garbage bags as recyclable when their whole purpose is to be thrown away; using labels such as “eco-friendly” or “100% Natural” without official certification; and claiming a better carbon footprint without acknowledging the existence of even better choices. An example would be “fuel-efficient” sport utility vehicles, which are only fuel efficient when compared with other SUVs rather than with smaller cars, public transit or bicycles.

Good LCA analysis, Sick says, can distinguish companies that are carbon-friendly in name only, from those that are truly helping the world clear the air.

The James Webb telescope spotted CO2 in an exoplanet’s atmosphere

The James Webb Space Telescope has gotten the first sniff of carbon dioxide in the atmosphere of a planet in another solar system.

“It’s incontrovertible. It’s there. It’s definitely there,” says planetary scientist and study coauthor Peter Gao of the Carnegie Institution for Science in Washington, D.C. “There have been hints of carbon dioxide in previous observations, but never confirmed to such an extent.”

The finding, submitted to arXiv.org on August 24, marks the first detailed scientific result published from the new telescope. It also points the way to finding the same greenhouse gas in the atmospheres of smaller, rockier planets that are more like Earth.
The planet, dubbed WASP-39b, is huge and puffy. It’s a bit wider than Jupiter and about as massive as Saturn. And it orbits its star every four Earth days, making it scorching hot. Those features make it a terrible place to search for evidence of extraterrestrial life (SN: 4/19/16). But that combination of puffy atmosphere and frequent passes in front of its star makes it easy to observe, a perfect planet to put the new telescope through its paces.

James Webb, or JWST, launched in December 2021 and released its first images in July 2022 (SN: 7/11/22). For about eight hours in July, the telescope observed starlight that filtered through the planet’s thick atmosphere as the planet crossed between its star and JWST. As it did, molecules of carbon dioxide in the atmosphere absorbed specific wavelengths of that starlight.

Previous observations of WASP-39b with NASA’s now-defunct Spitzer Space Telescope had detected just a whiff of absorption at that same wavelength. But it wasn’t enough to convince astronomers that carbon dioxide was really there.

“I would not have bet more than a beer, at most a six pack, on that weird tentative hint of carbon dioxide from Spitzer,” says astronomer Nicolas Cowan of McGill University in Montreal, who was not involved with the new study. The JWST detection, on the other hand, “is rock solid,” he says. “I wouldn’t bet my firstborn because I love him too much. But I would bet a nice vacation.”

The JWST data also showed an extra bit of absorption at wavelengths close to those absorbed by carbon dioxide. “It’s a mystery molecule,” says astronomer Natalie Batalha of the University of California, Santa Cruz, who led the team behind the observation. “We have several suspects that we are interrogating.”
The amount of carbon dioxide in an exoplanet’s atmosphere can reveal details about how the planet formed (SN: 5/11/18). If the planet was bombarded with asteroids, that could have brought in more carbon and enriched the atmosphere with carbon dioxide. If radiation from the star stripped away some of the planet atmosphere’s lighter elements, that could make it appear richer in carbon dioxide too.

Despite needing a telescope as powerful as JWST to detect it, carbon dioxide might be in atmospheres all over the galaxy, hiding in plain sight. “Carbon dioxide is one of the few molecules that is present in the atmospheres of all solar system planets that have atmospheres,” Batalha says. “It’s your front-line molecule.”

Eventually, astronomers hope to use JWST to find carbon dioxide and other molecules in the atmospheres of small rocky planets, like the ones orbiting the star TRAPPIST-1 (SN: 12/13/17). Some of those planets, at just the right distances from their star to sustain liquid water, might be good places to look for signs of life. It’s yet to be seen whether JWST will detect those signs of life, but it will be able to detect carbon dioxide.

“My first thought when I saw these data was, ‘Wow, this is gonna work,’” Batalha says.

How death’s-head hawkmoths manage to fly straight for miles in the dark

Sitting alone in the cockpit of a small biplane, Martin Wikelski listens for the pings of a machine by his side. The sonic beacons help the ecologist stalk death’s-head hawkmoths (Acherontia atropos) fluttering across the dark skies above Konstanz, Germany — about 80 kilometers north of the Swiss Alps.

The moths, nicknamed for the skull-and-crossbones pattern on their backs, migrate thousands of kilometers between northern Africa and the Alps during the spring and fall. Many migratory insects go where the wind takes them, says Ring Carde, an entomologist at the University of California, Riverside who is not a member of Wikelski’s team. Death’s-head hawkmoths appear to be anything but typical.

“When I follow them with a plane, I use very little gas,” says Wikelski, of the Max Planck Institute of Animal Behavior in Munich. “That shows me that they are supposedly choosing directions or areas that are probably supported by a little bit of updraft.”
A new analysis of data collected from 14 death’s-head hawkmoths suggest that these insects indeed pilot themselves, possibly relying in part on an internal compass attuned to Earth’s magnetic field. The moths not only fly along a straight path, they also stay the course even when winds change, Wikelski and colleagues report August 11 in Science.

The findings could help predict how the moths’ flight paths might shift as the globe continues warming, Wikelski says. Like many animals, death’s-head hawkmoths will probably move north in search of cooler temperatures, he suspects.

To keep tabs on the moths, Wikelski’s team glued radio transmitters to their backs, which is easier to do than one might expect. “Death’s-head hawkmoths are totally cool,” Wikelski says. They’re also huge. Weighing as much as three jellybeans, the moths are the largest in Europe. That makes attaching the tiny tags a cinch, though the moths don’t like it very much. “They talk to you, they shout at you a little bit,” he says.
Once the researchers set the newly tagged and slightly annoyed moths free, Wikelski took off after them in a plane. As the insects flew south toward the Alps, a device onboard pinged the transmitters at a frequency related to the moths’ distance from the plane.

While detailed tracking of eight of the moths allowed him to follow the insects for about 63 kilometers on average, he pursued one for just under 90 kilometers. That’s the longest distance that an insect has been continuously tracked, he says. “It’s outrageously crazy work,” he says of the night flights at low altitude. “It’s also a little dangerous and it’s just showing it’s possible.”