This class of ancient marine invertebrates has now been firmly pegged as lophophorates, a group whose living members include horseshoe worms and lamp shells, concludes an analysis of more than 1,500 fossils, including preserved soft tissue.
The soft-bodied creatures, encased in conical shells, concealed U-shaped guts and rings of tentacles called lophophores that surrounded their mouths. Fossil analysis suggests that hyoliths used those tentacles and spines, called helens, to trawl the seafloor more than 500 million years ago, researchers report online January 11 in Nature.
For years, paleontologists have argued over where on the tree of life these bottom-feeders belonged. Some scientists thought hyoliths were closely related to mollusks, while others thought the odd-looking creatures deserved a branch all their own. This new insight into hyolith anatomy “settles a long-standing paleontological debate,” the researchers write.
Got a mouse in the house? Blame yourself. Not your housekeeping, but your species. Humans never intended to live a mouse-friendly life. But as we moved into a settled life, some animals — including a few unassuming mice — settled in, too. In the process, their species prospered — and took over the world.
The rise and fall of the house mouse’s fortunes followed the stability and instability of the earliest human settlements, a new study shows. By analyzing teeth from ancient mice and comparing the results to modern rodents hanging out near partially settled groups, scientists show that when humans began to settle down, one mouse species seemed to follow. When those people moved on, another species moved in. The findings reveal that human settlement took place long before agriculture began, and that vermin didn’t require a big storehouse of grain to thrive off of us.
Between 15,000 and 11,000 years ago (a time called the Natufian period), people began to form small stone settlements in what is now Israel and Jordan. They were not yet farming or storing grain, but they were living in a single place for a season or two, and coming back to that place relatively often. Those early settlers changed the ecosystem of the world around them — presenting new opportunities for local flora and fauna.
Lior Weissbrod, an archaeologist at the University of Haifa in Israel, started his career wanting to search for clues to the history of animal-human relationships. He was especially interested in animal remains. But, he admits, mouse teeth weren’t exactly his first choice. “[At] the site I was going to work on, the remains of larger animals were already studied,” he says. “I was left with the small mammals.”
Small mammals have even smaller teeth. The largest mouse molars are only about 1 millimeter long. This meant a lot of time sifting dirt through very fine mesh for Weissbrod. He collected 372 mouse teeth from the dirt of five different archaeological sites in modern-day Israel and Jordan, with remains dating from 11,000 to 200,000 years ago. He gave the teeth to his colleague Thomas Cucchi of the National Museum of Natural History in Paris, who developed a technique to classify the mouse teeth by species based on tiny differences in their shape. The first human settlements were only a few houses, but that’s a seismic shift if you’re the size of a mouse. Before the settlements were built, the mouse species Mus macedonicus scurried through the undergrowth. But after stone buildings arrived, another species dominated — Mus domesticu s. When humans left the settlements for about 1,000 years around 12,000 years ago, the reverse occurred: M. domesticus left and M. macedonicus moved back in. The two species probably competed against each other when humans were absent, Weissbrod hypothesizes. But when people were around, M. domesticus was better at taking advantage of human presence. They may have had more flexible diets — making it easier to live off our leavings — and less fear of people. “Once you get humans into the picture and human settlements … there’s a creation of a new habitat,” he explains. “This species [M. domesticus] is finally getting a break from the competition.”
Ancient samples alone would not be enough to establish whether one mouse species could out-compete another based on human settlement alone. For a modern approximation of the ancient, partially settled lifestyle, Weissbrod turned to the Maasai, a nomadic cattle-herding group in southern Kenya. “Maasai are nothing like ancient hunter-gatherers,” he notes. “But we look at specific things that make them comparable.” Maasai herders tend to live in small groups, and use those settlements over and over. “The Maasai aren’t sedentary, they are on the verge perhaps,” he explains. “So they move [often] but not to the extent of highly mobile nomadic groups, they move on a seasonal basis.”
Weissbrod headed to Kenya to collect 192 live, spiny mice, living around Maasai settlements. These mice could be divided into two species, Acomys wilsoni — the short-tailed version — and Acomys ignitus, with longer tails. An archaeologist used to working with dry and dusty fossils, Weissbrod had to adjust to working with live, wiggling rodents. “It took a conscious process of pushing myself to get over the ingrained aversion,” he says. Like their ancient kin, one modern spiny mouse had a competitive advantage when people were present. A. ignites made up 87 percent of the mice caught hanging out with the Maasai, but only 45 percent of the mice in non-settled area. The associations between mice and men allowed Weissbrod, Cucchi and their colleagues to show how house mice came to live alongside us — no grain or farming required. “We can show with a high degree of certainty now that mice became attached to us 3,000 years before farming,” Weissbrod says. “From that we learned hunter-gatherers were making the transition to sedentary lives before farming. They didn’t need the crops to make that transition.” Weissbrod and his colleagues published their findings March 27 in the Proceedings of the National Academy of Sciences.
“I thought it was wonderful,” Melinda Zeder, an archaeologist at the Smithsonian Institution in Washington, D.C., says of the study. “I really appreciated it on a number of levels.” Zeder said she was impressed that such a big finding could come from samples so incredibly small. “It’s not a keystone or early writing, it’s something most people overlook,” she says. “Out of the mouths of mice, we’re getting a wonderful view of a pivotal time in history.”
Other species certainly took advantage of human settlement, Zeder notes. Wolves and wild boar arrived and “auditioned themselves for a starring role as a domesticate.” A few of the friendlier ones began to interact more with people. Those people began to see the advantages of the animals. From wolves were born dogs, and from wild boar our pigs.
But when humans weren’t paying attention, other species moved in and thrived on their own. Mice aren’t the only vermin that have arrived to, as Weissbrod says, “domesticate themselves.” Sparrows, pigeons, rats and other species have come to take advantage of our presence. We may have never seen a use for them, but that doesn’t stop them from using us.
The juice saga continues. The American Academy of Pediatrics updated their official ruling on fruit juice, recommending none of the sweet stuff before age 1. Published in the June Pediatrics, the recommendation is more restrictive than the previous one, which advised no juice before age 6 months.
The move comes from the recognition that whole fruits — not just the sweet, fiberless liquid contained within — are the most nutritious form of the food. Babies under 1 year old should be getting breast milk or formula until they’re ready to try solid foods. After their first birthdays, any extra liquids they drink should be water or milk. (These updated guidelines may not apply to babies who might need fruit juice to help with constipation.)
Whole fruits — or, mashed up clumps of them — have more fiber and protein than juice. The only benefit that juice has over its former whole form is that it’s way easier for a kid to slurp down.
The potential risks of cavities and obesity in part prompted the updated guidelines. It’s worth saying that neither of these outcomes are guaranteed with juice drinking. In fact, a recent study failed to find a link between juice drinking and excessive weight gain in children. Still, juice offers no nutritional advantage over whole fruits, so the reasoning of the AAP seems to be, “Why risk it?”
The AAP gave additional, more nuanced advice for parents who do decide to give juice to children age 1 and older:
Don’t give kids juice in bottles or sippy cups, especially at bedtime. That ease of drinkability would encourage kids to drink juice for long periods of time, prolonging sugar baths for teeth.
Look out for unpasteurized juice. Harmful forms of E. coli bacteria can appear in unpasteurized apple cider, for instance, posing a particular risk for young people.
Give 1- to 3-year-old kids no more than 4 ounces of juice a day. That recommendation drops 2 ounces from earlier guidance that limited juice to between 4 and 6 ounces daily. Children ages 4 to 6 years old get those extra 2 ounces back, with a daily limit of between 4 and 6 ounces.
Make sure kids are drinking 100 percent juice, not those sneaky “cocktails” or “drinks.” Those are often nutritional wastelands, packed with even more sugar and devoid of other nutrients. Though the guidelines don’t mention habit formation, I suspect this also came into play in the AAP’s encouragement of whole fruits over juice. Children’s taste preferences get shaped early. Really early, actually. Fetuses learn to love flavors their mothers ate while pregnant. So babies who grow accustomed to sweet juice might be less impressed with water or milk. And while that might not be a problem in the early years of life, years or decades of drinking sweet liquids will catch up with them eventually.
Anyone who’s dragged roller luggage knows it’s liable to fishtail. To most people, this is a nuisance. To a few scientists, it’s a physics problem. Researchers detail the precise interplay of forces that set suitcases shimmying in a study published online June 21 in Proceedings of the Royal Society A.
The researchers simulated and observed the motion of a toy model suitcase on a treadmill. They found that the suitcase’s side-to-side motion at any given moment is related to its tilt and distance off-center from the line of travel. For instance, imagine a suitcase rolling straight ahead, but then hitting a bump or cutting a corner that causes the right wheel to lift. The suitcase’s tilt makes the left wheel steer the suitcase rightward. When the right wheel falls back to the ground and the left wheel lifts off, the suitcase — now positioned and tilted to the right — banks left. Switch wheels, swing, repeat.
“It’s a pretty good analysis of the system,” says Andy Ruina, a physicist at Cornell University who was not involved in the research.
This swaying motion is “a bit funny and counterintuitive,” says study coauthor Sylvain Courrech du Pont. It actually gets smaller when the suitcase rolls faster. Lowering the angle of the suitcase can get the rocking to stop altogether, he says.
Understanding the physics of this system could be useful for more than designing stable suitcases, because it also applies to other two-wheel carriers — like car-pulled trailers. “In the near future, maybe we will have a car without a driver,” says Courrech du Pont, a physicist at Paris Diderot University. “It would be a good thing if the car knows how to stop this kind of motion.”
Single-celled microbes may have taught plants and animals how to pack their genetic baggage.
Archaea, a type of single-celled life-form similar to bacteria, keep their DNA wrapped around proteins much in the same way as more complex organisms, researchers report in the Aug. 11 Science. This finding provides new insight into the evolutionary origins of the DNA-packing process and the secret to archaea’s hardiness, which enables some to live in acid, boiling water or other extreme environments. All eukaryotes, including plants and animals, store their genetic material in cell compartments called nuclei. Such organisms cram meters of genetic material into the tiny nuclei by wrapping strands of DNA around clusters of proteins called histones (SN: 1/10/15, p. 32). “It doesn’t really matter which eukaryote you look at, whether it’s amoebas or plants or humans or fish or insects or anything,” says coauthor John Reeve, a microbiologist at Ohio State University. “They all have exactly the same structure.”
Unlike bacteria, some archaea also contain histones, but researchers weren’t sure whether these microbes spool DNA around the protein bobbins the way eukaryotes do. So Reeve and colleagues used a method called X-ray crystallography to discern, for the first time, the precise shape of archaea DNA bound to histones.
The researchers saw that archaea DNA coils around the histones, similar to the way it does in eukaryotes. “It’s a big deal actually seeing this,” says Steven Henikoff, a molecular biologist at the Fred Hutchinson Cancer Research Center in Seattle who was not involved in the work. The resemblance between archaea and eukaryote DNA wrapping means that the first organism that used this storage scheme was an ancestor of both modern eukaryotes and archaea, the researchers conclude.
But the way archaea DNA twists around histones isn’t identical to the coils of DNA seen in eukaryotes. In eukaryotes, a strand of DNA loops twice around a cluster of eight histones to create what’s called a nucleosome, and connects many of these nucleosomes like beads on a string. Archaea DNA string together bundles of proteins, too. But while eukaryotes always tether eight-protein clumps, archaea DNA can spiral around stacks of many more histones to create rod-shaped structures of various lengths. “So it’s not as uniform as in eukaryotes,” says coauthor Karolin Luger, a biophysicist and Howard Hughes Medical Institute investigator at the University of Colorado Boulder.
Researchers tested the importance of that rodlike architecture by tampering with the histone-DNA structures of some archaea and then observing how these mutant archaea fared in different conditions. “We tried to mimic some real-life situations that some of these organisms could get into,” Luger says. For instance, some archaea that live in volcanic vents that emit sulfurous gases sometimes get spewed out and have to survive sans sulfur. Archaea with normal histone-DNA shapes can handle that kind of midlife crisis. But when researchers cut their mutant microbes off sulfur, the microorganisms’ growth was stunted. These microbes may not have been able to adapt to sulfur deprivation as well as their wild counterparts “because they can’t unpackage their DNA as readily if the structure has been changed,” Reeve says.
Henikoff calls it “a pretty cool experiment.” It showed that the archaea’s particular DNA-histone architecture was “biologically relevant, not just a novelty,” he says.
A total solar eclipse shines a light on the sun’s elusive atmosphere. When the moon blocks the sun, it’s finally possible to see how this diffuse cloud of plasma, called the corona, is magnetically sculpted into beautiful loops. The material there is about a trillionth the density of the solar surface. From its delicate and diaphanous appearance, you might expect the corona to be where the sun goes to cool off.
That couldn’t be more wrong. The corona is a mysteriously sizzling inferno where the temperature jumps from a mere few thousand degrees to several million degrees. Why? “It’s one of the longest unanswered questions in all of solar physics,” says Paul Bryans of the High Altitude Observatory at the National Center for Atmospheric Research in Boulder, Colo. “There are a bunch of different ideas about what’s going on there, but it’s still highly debated.” Data collected during the Aug. 21 solar eclipse may bring scientists closer to settling that debate.
The sun simmers at about 5,500° Celsius at its visible surface, the photosphere. But the gas just above the photosphere is heated to about 10,000° C. Then in the corona, the temperature makes an abrupt jump to several million degrees.
“It’s counterintuitive that as you move away from a heat source, it gets warmer,” Bryans says. The corona’s diffuseness makes its heat even stranger — the most basic ways to heat a material rely on particles crashing into each other, but the corona is too tenuous for that to work.
An eclipse first brought this abnormal arrangement to light. German astronomer Walter Grotrian observed spectral lines — the fingerprints of elements that show up when light is split into its component wavelengths — emitted by the corona during a total solar eclipse in 1869.
Astronomers at first assumed those lines were due to a new element they dubbed coronium. But Grotrian realized that iron atoms stripped of several of their electrons by the heat were responsible. These iron lines in the corona are still used to measure its temperature: The more electrons lost, the hotter the material in the corona (SN Online: 6/16/17). Such extreme temperatures have something to do with the corona’s magnetic field, which is probably where all that energy is stored. Once the energy is there, the corona has a hard time radiating it away, so it builds up. Most of the ways that materials release energy — stripping electrons from atoms, accelerating those electrons so they release X-rays and ultraviolet particles of light — are already maxed out in the corona. “We know there’s energy coming in, and it’s hard to get it out unless you get very hot,” says Amir Caspi of the Southwest Research Institute in Boulder, Colo. “What we don’t understand is how that energy gets into the corona in the first place.”
Physicists have several ideas. Maybe loops of magnetic field lines in the corona vibrate like guitar strings, heating things up, sort of like how a microwave oven heats food. Maybe the magnetic anchors of those loops on the sun’s surface braid and twist the magnetic field above them, dumping in energy that is then continually radiated away like the heating element in a toaster.
Or maybe tiny explosions called nanoflares or jets called spicules carry energy away from the photosphere and into the corona. The formation of new coronal loops that connect to existing ones could dump in enough extra energy to heat the plasma up.
During the solar eclipse, dozens of groups of scientists across the country will deploy telescopes equipped with filters to pick out polarized light, infrared light or those electron-deprived iron atoms in search of answers. Bryans and his colleagues will be on a mountaintop near Casper, Wyo., in the path of totality. There, the team will take images at a fast clip in both visual and infrared wavelengths to map how the corona changes as the moon moves across the sun. (I will be in Wyoming with this team on the day of the eclipse and will be sharing more about how the experiments went.)
“We can look at how things change as we move from the surface up into the atmosphere,” Bryans says. “How that changes is tied to understanding how the corona is heated.”
Probably all of those mechanisms scientists have thought up contribute to the corona’s extreme heat. It’s difficult to declare just one the most important. But ultimately, the solar eclipse is the best chance scientists have to test them. It’s the only time the corona is the star of the solar show.