Here’s how mysterious last-resort antibiotics kill bacteria

To kill drug-resistant bacteria, “last-resort” antibiotics borrow a tactic from Medusa’s playbook: petrification.

New high-resolution microscope images show that a class of antibiotics called polymyxins crystallize the cell membranes of bacteria. The honeycomb-shaped crystals that form turn the microbes’ usually supple skins of fat molecules into thin brittle sheets, researchers report October 21 in Nature Communications. When the petrified membranes break, the bacteria die.

The finding was a total surprise, says Sebastian Hiller, a structural biologist at the University of Basel in Switzerland.
Hiller, biophysicist Selen Manioğlu and their colleagues had been using the antibiotics as a control for a different experiment. When the researchers turned on their microscopes, “we saw these waffles,” Hiller says. “I immediately recognized, wow, this must be something special.”

Polymyxin antibiotics like colistin were discovered in the 1940s and are now used as a powerful last-ditch defense against bacteria that have evolved resistance to most other drugs. Researchers already knew that polymyxins somehow interfere with bacterial cell membranes. But nobody had imagined a scenario like the “waffles” the team discovered.
In the new study, Hiller and colleagues exposed bits of cell membrane from Escherichia coli to varying concentrations of colistin. Imaging with atomic force microscopy revealed that crystals formed at the minimum concentrations required to kill the bacteria. Colistin-resistant strains exposed to the drug didn’t form crystals.

The results indicate that polymyxins work by arranging the cell membrane into a crystalline structure that leaves it brittle and vulnerable. “That’s something that has not even remotely been hypothesized so far,” says Markus Weingarth, a biochemist at Utrecht University in the Netherlands who was not involved in the work. “It’s a very important study. I’d even say it’s a breakthrough.”

How exactly polymyxins crystallize cell membranes remains unclear. That’s a problem because some bacteria have developed resistance to polymyxins and are becoming more widespread (SN: 5/27/16; SN: 10/30/90). Without more studies like this one to help reveal how the drugs work, scientists can’t effectively modify the antibiotics to make them more effective, Weingarth says.

Hiller hopes that this first glimpse of polymyxins’ petrifying powers will help scientists combat resistance to the antibiotics.

“Understanding these concepts will definitely bring a lot of ideas — and the potential to make new drugs,” Hiller says.

This ancient Canaanite comb is engraved with a plea against lice

Engraved into the side of a nearly 4,000-year-old ivory comb is a simple wish: Get these lice out of my hair.

This faint inscription, written in the early language of the ancient Canaanites, represents the earliest known instance of a complete sentence written using a phonetic alphabet, says archaeologist Yosef Garfinkel of the Hebrew University of Jerusalem.

The writing system of the Canaanites, who lived in a region in the eastern Mediterranean called the Levant until around 2,000 years ago, later served as a major basis for many modern alphabets (SN: 7/27/17). That makes the comb “the most important object I’ve ever found during an excavation,” says Garfinkel. The research was published November 9 in the Jerusalem Journal of Archaeology.
The Canaanites were a cultural group that traded widely across the Mediterranean. Few of their written records have survived, so most of what researchers know about them come from other documents, such as the Old Testament.

The comb was the unearthed in 2016 among the ruins of the ancient city of Lachish in present-day Israel. Years later, when the comb was sent to a lab to search for traces of lice, someone noticed faint symbols etched on the side. A closer look revealed that the symbols spelled out the sentence, “May this tusk root out the lice of the hair and the beard,” Garfinkel and colleagues report November 9 in the Jerusalem Journal of Archaeology.

The discovery may offer a glimpse into the life of one of Lachish’s wealthy denizens. The fact that the sentence refers to a beard suggests it belonged to an elite man, Garfinkel says, since elephant ivory was an expensive good that had to be imported from Egypt.

The plea against lice is “so human,” says Garfinkel, who notes that other writings from the time tend to center around royal accomplishments or religion. It also appears that the comb was able to fulfill its purpose, at least somewhat. Between the teeth, the researchers found the ancient remains of a louse.

King Tut’s tomb still has secrets to reveal 100 years after its discovery

One hundred years ago, archaeologist Howard Carter stumbled across the tomb of ancient Egypt’s King Tutankhamun. Carter’s life was never the same. Neither was the young pharaoh’s afterlife.

Newspapers around the world immediately ran stories about Carter’s discovery of a long-lost pharaoh’s grave and the wonders it might contain, propelling the abrasive Englishman to worldwide acclaim. A boy king once consigned to ancient obscurity became the most famous of pharaohs (SN: 12/18/76).

It all started on November 4, 1922, when excavators led by Carter discovered a step cut into the valley floor of a largely unexplored part of Egypt’s Valley of the Kings. By November 23, the team had uncovered stairs leading down to a door. A hieroglyphic seal on the door identified what lay beyond: King Tutankhamun’s tomb.
Tutankhamun assumed power around 1334 B.C., when he was about 10 years old. His reign lasted nearly a decade until his untimely demise. Although a minor figure among Egyptian pharaohs, Tutankhamun is one of the few whose richly appointed burial place was found largely intact.

An unusually meticulous excavator for his time, Carter organized a 10-year project to document, conserve and remove more than 6,000 items from Tutankhamun’s four-chambered tomb. While some objects, like Tut’s gold burial mask, are now iconic, many have been in storage and out of sight for decades. But that’s about to change. About 5,400 of Tutankhamun’s well-preserved tomb furnishings are slated to soon go on display when the new Grand Egyptian Museum, near the Pyramids of Giza, opens.

“The [Tut] burial hoard is something very unique,” Shirin Frangoul-Brückner, managing director of Atelier Brückner in Stuttgart, Germany, the firm that designed the museum’s Tutankhamun Gallery, said in an interview released by her company. Among other items, the exhibit will include the gold burial mask, musical instruments, hunting equipment, jewelry and six chariots.

Even as more of Tut’s story is poised to come to light, here are four things to know on the 100th anniversary of his tomb’s discovery.

  1. Tut may not have been frail.
    Tutankhamun has a reputation as a fragile young man who limped on a clubfoot. Some researchers suspect a weakened immune system set him up for an early death.

But “recent research suggests it’s wrong to portray Tut as a fragile pharaoh,” says Egyptologist and mummy researcher Bob Brier, who is an expert on King Tut. His new book Tutankhamun and the Tomb That Changed the World chronicles how 100 years of research have shaped both Tut’s story and archaeology itself.

Clues from Tutankhamun’s mummy and tomb items boost his physical standing, says Brier, of Long Island University in Brookville, N.Y. The young pharaoh might even have participated in warfare.

Military chariots, leather armor and archery equipment buried with Tutankhamun show that he wanted to be viewed as a hunter and a warrior, Brier says. Inscribed blocks from Tutankhamun’s temple, which were reused in later building projects before researchers identified them, portray the pharaoh leading charioteers in undated battles.

If more blocks turn up showing battle scenes marked with dates, it would suggest Tutankhamun probably participated in those conflicts, Brier says. Pharaohs typically recorded dates of actual battles depicted in their temples, though inscribed scenes may have exaggerated their heroism.

The frail story line has been built in part on the potential discovery of a deformity in Tut’s left foot, along with 130 walking sticks found in his tomb. But ancient Egyptian officials were often depicted with walking sticks as signs of authority, not infirmity, Brier says. And researchers’ opinions vary about whether images of Tut’s bones reveal serious deformities.

X-rays of the recovered mummy from the 1960s show no signs of a misshapen ankle that would have caused a limp. Neither did CT images examined in 2005 by the Egyptian Mummy Project, headed by Egyptologist and former Egyptian Minister of Antiquities Zahi Hawass.

Then a 2009 reexamination of the CT images by the same researchers indicated that Tutankhamun had a left-foot deformity generally associated with walking on the ankle or the side of the foot, the team reported. The team’s radiologist, Sahar Saleem of Egypt’s Cairo University, says the CT images show that Tutankhamun experienced a mild left clubfoot, bone tissue death at the ends of two long bones that connect to the second and third left toes and a missing bone in the second left toe.
Those foot problems would have “caused the king pain when he walked or pressed his weight on his foot, and the clubfoot must have caused limping,” Saleem says. So a labored gait, rather than an appeal to royal authority, could explain the many walking sticks placed in Tutankhamun’s tomb, she says.

Brier, however, doubts that scenario. Tutankhamun’s legs appear to be symmetrical in the CT images, he says, indicating that any left foot deformity was too mild to cause the pharaoh regularly to put excess weight on his right side while walking.

Whether or not the boy king limped through life, the discovery and study of his mummy made it clear that he died around age 19, on the cusp of adulthood. Yet Tut’s cause of death still proves elusive.

In a 2010 analysis of DNA extracted from the pharaoh’s mummy, Hawass and colleagues contended that malaria, as well as the tissue-destroying bone disorder cited by Saleem from the CT images, hastened Tutankhamun’s death. But other researchers, including Brier, disagree with that conclusion. Further ancient DNA studies using powerful new tools for extracting and testing genetic material from the mummy could help solve that mystery.

  1. Tut’s initial obscurity led to his fame.
    After Tutankhamun’s death, ancient Egyptian officials did their best to erase historical references to him. His reign was rubbed out because his father, Akhenaten, was a “heretic king” who alienated his own people by banishing the worship of all Egyptian gods save for one.

“Akhenaten is the first monotheist recorded in history,” Brier says. Ordinary Egyptians who had prayed to hundreds of gods suddenly could worship only Aten, a sun god formerly regarded as a minor deity.

Meeting intense resistance to his banning of cherished religious practices, Akhenaten — who named himself after Aten — moved to an isolated city, Amarna, where he lived with his wife Nefertiti, six girls, one boy and around 20,000 followers. After Akhenaten died, residents of the desert outpost returned to their former homes. Egyptians reclaimed their old-time religion. Akhenaten’s son, Tutankhaten — also originally named after Aten — became king, and his name was changed to Tutankhamun in honor of Amun, the most powerful of the Egyptian gods at the time.

Later pharaohs omitted from written records any mentions of Akhenaten and Tutankhamun. Tut’s tomb was treated just as dismissively. Huts of craftsmen working on the tomb of King Ramses VI nearly 200 years after Tut’s death were built over the stairway leading down to Tutankhamun’s nearby, far smaller tomb. Limestone chips from the construction littered the site.
The huts remained in place until Carter showed up. While Carter found evidence that the boy king’s tomb had been entered twice after it was sealed, whoever had broken in took no major objects.

“Tutankhamun’s ignominy and insignificance saved him” from tomb robbers, says UCLA Egyptologist Kara Cooney.

  1. Tut’s tomb was a rushed job.
    Pharaohs usually prepared their tombs over decades, building many rooms to hold treasures and extravagant coffins. Egyptian traditions required the placement of a mummified body in a tomb about 70 days after death. That amount of time may have allowed a mummy to dry out sufficiently while retaining enough moisture to fold the arms across the body inside a coffin, Brier suspects.

Because Tutankhamun died prematurely, he had no time for extended tomb preparations. And the 70-day burial tradition gave craftsmen little time to finish crucial tomb items, many of which required a year or more to make. Those objects include a carved stone sarcophagus that encased three nested coffins, four shrines, hundreds of servant statues, a gold mask, chariots, jewelry, beds, chairs and an alabaster chest that contained four miniature gold coffins for Tutankhamun’s internal organs removed during mummification.

Evidence points to workers repurposing many objects from other people’s tombs for Tutankhamun. Even then, time ran out.

Consider the sarcophagus. Two of four goddesses on the stone container lack fully carved jewelry. Workers painted missing jewelry parts. Carved pillars on the sarcophagus are also unfinished.

Tutankhamun’s granite sarcophagus lid, a mismatch for the quartzite bottom, provides another clue to workers’ frenzied efforts. Something must have happened to the original quartzite lid, so workers carved a new lid from available granite and painted it to look like quartzite, Brier says.

Repairs on the new lid indicate that it broke in half during the carving process. “Tutankhamun was buried with a cracked, mismatched sarcophagus lid,” Brier says.

Tutankhamun’s sarcophagus may originally have been made for Smenkare, a mysterious individual who some researchers identify as the boy king’s half brother. Little is known about Smenkare, who possibly reigned for about a year after Akhenaten’s death, just before Tutankhamun, Brier says. But Smenkare’s tomb has not been found, leaving the sarcophagus puzzle unsolved.

Objects including the young king’s throne, three nested coffins and the shrine and tiny coffins for his internal organs also contain evidence of having originally belonged to someone else before being modified for reuse, says Harvard University archaeologist Peter Der Manuelian.
Even Tutankhamun’s tomb may not be what it appears. Egyptologist Nicholas Reeves of the University of Arizona Egyptian Expedition in Tucson has argued since 2015 that the boy king’s burial place was intended for Nefertiti. He argues that Nefertiti briefly succeeded Akhenaten as Egypt’s ruler and was the one given the title Smenkare.

No one has found Nefertiti’s tomb yet. But Reeves predicts that one wall of Tutankhamun’s burial chamber blocks access to a larger tomb where Nefertiti lies. Painted scenes and writing on that wall depict Tutankhamun performing a ritual on Nefertiti’s mummy, he asserts. And the gridded structure of those paintings was used by Egyptian artists years before Tutankhamun’s burial but not at the time of his interment.

But four of five remote sensing studies conducted inside Tutankhamun’s tomb have found no evidence of a hidden tomb. Nefertiti, like Smenkare, remains a mystery.

  1. Tut’s tomb changed archaeology and the antiquities trade.
    Carter’s stunning discovery occurred as Egyptians were protesting British colonial rule and helped fuel that movement. Among the actions that enraged Egyptian officials: Carter and his financial backer, a wealthy British aristocrat named Lord Carnarvon, sold exclusive newspaper coverage of the excavation to The Times of London. Things got so bad that Egypt’s government locked Carter out of the tomb for nearly a year, starting in early 1924.

Egyptian nationalists wanted political independence — and an end to decades of foreign adventurers bringing ancient Egyptian finds back to their home countries. Tutankhamun’s resurrected tomb pushed Egyptian authorities toward enacting laws and policies that helped to end the British colonial state and reduce the flow of antiquities out of Egypt, Brier says, though it took decades. Egypt became a nation totally independent of England in 1953. A 1983 law decreed that antiquities could no longer be taken out of Egypt (though those removed before 1983 are still legal to own and can be sold through auction houses).

In 1922, however, Carter and Lord Carnarvon regarded many objects in Tutankhamun’s tomb as theirs for the taking, Brier says. That was the way that Valley of the Kings excavations had worked for the previous 50 years, in a system that divided finds equally between Cairo’s Egyptian Museum and an expedition’s home institution. Taking personal mementos was also common.

Evidence of Carter’s casual pocketing of various artifacts while painstakingly clearing the boy king’s tomb continues to emerge. “Carter didn’t sell what he took,” Brier says. “But he felt he had a right to take certain items as the tomb’s excavator.”
Recently recovered letters of English Egyptologist Alan Gardiner from the 1930s, described by Brier in his book, recount how Carter gave Gardiner several items from Tutankhamun’s tomb, including an ornament used as a food offering for the dead. French Egyptologist Marc Gabolde of Paul-Valéry Montpellier 3 University has tracked down beads, jewelry, a headdress fragment and other items taken from Tutankhamun’s tomb by Carter and Carnarvon.

Yet it is undeniable that one of Tutankhamun’s greatest legacies, thanks to Carter, is the benchmark the excavation of his tomb set for future excavations, Brier says. Carter started his career as an artist who copied painted images on the walls of Egyptian tombs for excavators. He later learned excavation techniques in the field working with an eminent English Egyptologist, Flinders Petrie. Carter took tomb documentation to a new level, rounding up a crack team consisting of a photographer, a conservator, two draftsmen, an engineer and an authority on ancient Egyptian writing.

Their decade-long effort also made possible the new Tutankhamun exhibition at the Grand Egyptian Museum. Now, not only museum visitors but also a new generation of researchers will have unprecedented access to the pharaoh’s tomb trove.

“Most of Tutankhamun’s [tomb] objects have been given little if any study beyond what Carter was able to do,” says UCLA’s Cooney.

That won’t be true for much longer, as the most famous tomb in the Valley of the Kings enters the next stage of its public and scientific afterlife.

Here’s how polar bears might get traction on snow

Tiny “fingers” can help polar bears get a grip.

Like the rubbery nubs on the bottom of baby socks, microstructures on the bears’ paw pads offer some extra friction, scientists report November 1 in the Journal of the Royal Society Interface. The pad protrusions may keep polar bears from slipping on snow, says Ali Dhinojwala, a polymer scientist at the University of Akron in Ohio who has also studied the sticking power of gecko feet (SN: 8/9/05).
Nathaniel Orndorf, a materials scientist at Akron who focuses on ice, adhesion and friction, was interested in the work Dhinojwala’s lab did on geckos, but “we can’t really put geckos on the ice,” he says. So he turned to polar bears.

Orndorf teamed up with Dhinojwala and Austin Garner, an animal biologist now at Syracuse University in New York, and compared the paws of polar bears, brown bears, American black bears and a sun bear. All but the sun bear had paw pad bumps. But the polar bears’ bumps looked a little different. For a given diameter, their bumps tend to be taller, the team found. That extra height translates to more traction on lab-made snow, experiments with 3-D printed models of the bumps suggest.

Until now, scientists didn’t know that bump shape could make the difference between gripping and slipping, Dhinojwala says.
Polar bear paw pads are also ringed with fur and are smaller than those of other bears, the team reports, adaptations that might let the Arctic animals conserve body heat as they trod upon ice. Smaller pads generally mean less real estate for grabbing the ground. So extra-grippy pads could help polar bears make the most of what they’ve got, Orndorf says.

Along with bumpy pads, the team hopes to study polar bears’ fuzzy paws and short claws, which might also give the animals a nonslip grip.

Astronomers have found the closest known black hole to Earth

The closest black hole yet found is just 1,560 light-years from Earth, a new study reports. The black hole, dubbed Gaia BH1, is about 10 times the mass of the sun and orbits a sunlike star.

Most known black holes steal and eat gas from massive companion stars. That gas forms a disk around the black hole and glows brightly in X-rays. But hungry black holes are not the most common ones in our galaxy. Far more numerous are the tranquil black holes that are not mid-meal, which astronomers have dreamed of finding for decades. Previous claims of finding such black holes have so far not held up (SN: 5/6/20; SN: 3/11/22).
So astrophysicist Kareem El-Badry and colleagues turned to newly released data from the Gaia spacecraft, which precisely maps the positions of billions of stars (SN: 6/13/22). A star orbiting a black hole at a safe distance won’t get eaten, but it will be pulled back and forth by the black hole’s gravity. Astronomers can detect the star’s motion and deduce the black hole’s presence.

Out of hundreds of thousands of stars that looked like they were tugged by an unseen object, just one seemed like a good black hole candidate. Follow-up observations with other telescopes support the black hole idea, the team reports November 2 in Monthly Notices of the Royal Astronomical Society.

Gaia BH1 is the nearest black hole to Earth ever discovered — the next closest is around 3,200 light-years away. But it’s probably not the closest that exists, or even the closest we’ll ever find. Astronomers think there are about 100 million black holes in the Milky Way, but almost all of them are invisible. “They’re just isolated, so we can’t see them,” says El-Badry, of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass.

The next data release from Gaia is due out in 2025, and El-Badry expects it to bring more black hole bounty. “We think there are probably a lot that are closer,” he says. “Just finding one … suggests there are a bunch more to be found.”

Common, cheap ingredients can break down some ‘forever chemicals’

There’s a new way to rip apart harmful “forever chemicals,” scientists say.

Perfluoroalkyl and polyfluoroalkyl substances, also known as PFAS, are found in nonstick pans, water-repellent fabrics and food packaging and they are pervasive throughout the environment. They’re nicknamed forever chemicals for their ability to stick around and not break down. In part, that’s because PFAS have a super strong bond between their carbon and fluorine atoms (SN: 6/4/19). Now, using a bit of heat and two relatively common compounds, researchers have degraded one major type of forever chemical in the lab, the team reports in the Aug. 19 Science. The work could help pave the way for a process for breaking down certain forever chemicals commercially, for instance by treating wastewater.
“The fundamental knowledge of how the materials degrade is the single most important thing coming out of this study,” organic chemist William Dichtel said in an August 16 news conference.

While some scientists have found relatively simple ways of breaking down select PFAS, most degradation methods require harsh, energy-intensive processes using intense pressure — in some cases over 22 megapascals — or extremely high temperatures — sometimes upwards of 1000⁰ Celsius — to break the chemical bonds (SN: 6/3/22).

Dichtel, of Northwestern University in Evanston, Ill., and his team experimented with two substances found in nearly every chemistry lab cabinet: sodium hydroxide, also known as lye, and a solvent called dimethyl sulfoxide, or DMSO. The team worked specifically with a group of forever chemicals called PFCAs, which contain carboxylic acid and constitute a large percentage of all PFAS. Some of these kinds of forever chemicals are found in water-resistant clothes.

When the team combined PFCAs with the lye and DMSO at 120⁰ C and with no extra pressure needed, the carboxylic acid fell off the chemical and became carbon dioxide in a process called decarboxylation. What happened next was unexpected, Dichtel said. Loss of the acid led to a process causing “the entire molecule to fall apart in a cascade of complex reactions.” This cascade involved steps that degraded the rest of the chemical into fluoride ions and smaller carbon-containing products, leaving behind virtually no harmful by-products. .

“It’s a neat method, it’s different from other ones that have been tried,” says Chris Sales, an environmental engineer at Drexel University in Philadelphia who was not involved in the study. “The biggest question is, how could this be adapted and scaled up?” Northwestern has filed a provisional patent on behalf of the researchers.

Understanding this mechanism is just one step in undoing forever chemicals, Dichtel’s team said. And more research is needed: There are other classes of PFAS that require their own solutions. This process wouldn’t work to tackle PFAS out in the environment, because it requires a concentrated amount of the chemicals. But it could one day be used in wastewater treatment plants, where the pollutants could be filtered out of the water, concentrated and then broken down.

Why mosquitoes are especially good at smelling you

Some mosquitoes have a near-foolproof thirst for human blood. Previous attempts to prevent the insects from tracking people down by blocking part of mosquitoes’ ability to smell have failed. A new study hints it’s because the bloodsuckers have built-in workarounds to ensure they can always smell us.

For most animals, individual nerve cells in the olfactory system can detect just one type of odor. But Aedes aegypti mosquitoes’ nerve cells can each detect many smells, researchers report August 18 in Cell. That means if a cell were to lose the ability to detect one human odor, it still can pick up on other scents.
The study provides the most detailed map yet of a mosquito’s sense of smell and suggests that concealing human aromas from the insects could be more complicated than researchers thought.

Repellents that block mosquitoes from detecting human-associated scents could be especially tricky to make. “Maybe instead of trying to mask them from finding us, it would be better to find odorants that mosquitoes don’t like to smell,” says Anandasankar Ray, a neuroscientist at the University of California, Riverside who was not involved in the work. Such repellents may confuse or irritate the bloodsuckers and send them flying away (SN: 9/21/11; SN: 3/4/21).

Effective repellents are a key tool to prevent mosquitoes from transmitting disease-causing viruses such as dengue and Zika (SN: 7/11/22). “Mosquitoes are responsible for more human deaths than any other creature,” says Olivia Goldman, a neurobiologist at Rockefeller University in New York City. “The better we understand them, the better that we can have these interventions.”

Mosquitoes that feed on people home in on a variety of cues when hunting, including body heat and body odor. The insects smell using their antennae and small appendages close to the mouth. Using three types of sensors in olfactory nerve cells, they can detect chemicals such as carbon dioxide from exhaled breath or components of body odor (SN: 7/16/15).

In previous work, researchers thought that blocking some sensors might hide human scents from mosquitoes by disrupting the smell messages sent to the brain (SN: 12/5/13). But even those sensor-deprived mosquitoes can still smell and bite people, says neurobiologist Margo Herre also of Rockefeller University.

So Goldman, Herre and colleagues added fluorescent labels to A. aegypti nerve cells, or neurons, to learn new details about how the mosquito brain deciphers human odors. Surprisingly, rather than finding the typical single type of sensor per nerve cell, the team found that individual mosquito neurons appear more like sensory hubs.

Genetic analyses confirmed that some of the olfactory nerve cells had more than one type of sensor. Some cells produced electrical signals in response to several mosquito-attracting chemicals found in humans such as octenol and triethyl amine — a sign the neurons could detect more than one type of odor molecule. A separate study published in April in eLife found similar results in fruit flies, which suggests such a system may be common among insects.

It’s unclear why having redundant ways of detecting people’s odors might be useful to mosquitoes. “Different people can smell very different from one another,” says study coauthor Meg Younger, a neurobiologist at Boston University. “Maybe this is a setup to find a human regardless of what variety of human body odor that human is emitting.”

Oort cloud comets may spin themselves to death

Comets from the solar system’s deep freezer often don’t survive their first encounter with the sun. Now one scientist thinks he knows why: Solar warmth makes some of the cosmic snowballs spin so fast, they fall apart.

This suggestion could help solve a decades-old mystery about what destroys many “long-period” comets, astronomer David Jewitt reports in a study submitted August 8 to arXiv.org. Long-period comets originate in the Oort cloud, a sphere of icy objects at the solar system’s fringe (SN: 8/18/08). Those that survive their first trip around the sun tend to swing by our star only once every 200 years.
“These things are stable out there in the Oort cloud where nothing ever happens. When they come toward the sun, they heat up, all hell breaks loose, and they fall apart,” Jewitt says.

The Dutch astronomer Jan Oort first proposed the Oort cloud as a cometary reservoir in 1950. He realized that many of its comets that came near Earth were first-time visitors, not return travelers. Something was taking the comets out, but no one knew what.

One possibility was that the comets die by sublimating all of their water away as they near the heat of the sun until there’s nothing left. But that didn’t fit with observations of comets that seemed to physically break up into smaller pieces. The trouble was, those breakups are hard to watch in real time.

“The disintegrations are really hard to observe because they’re unpredictable, and they happen quickly,” Jewitt says.

He ran into that difficulty when he tried to observe Comet Leonard, a bright comet that put on a spectacular show in winter 2021–2022. Jewitt had applied for time to observe the comet with the Hubble Space Telescope in April and June 2022. But by February, the comet had already disintegrated. “That was a wake-up call,” Jewitt says.

So Jewitt turned to historical observations of long-period comets that came close to the sun since the year 2000. He selected those whose water vapor production had been indirectly measured via an instrument called SWAN on NASA’s SOHO spacecraft, to see how quickly the comets were losing mass. He also picked out comets whose movements deviating from their orbits around the sun had been measured. Those motions are a result of water vapor jets pushing the comet around, like a spraying hose flopping around a garden.

That left him with 27 comets, seven of which did not survive their closest approach to the sun.

Jewitt expected that the most active comets would disintegrate the fastest, by puffing away all their water. But he found the opposite: It turns out that the least active comets with the smallest dirty snowball cores were the most at risk of falling apart.

“Basically, being a small nucleus near the sun causes you to die,” Jewitt says. “The question is, why?”

It wasn’t that the comets were torn apart by the sun’s gravity — they didn’t get close enough for that. And simply sublimating until they went poof would have been too slow a death to match the observations. The comets are also unlikely to collide with anything else in the vastness of space and break apart that way. And a previous suggestion that pressure builds up inside the comets until they explode like a hand grenade doesn’t make sense to Jewitt. Comets’ upper few centimeters of material would absorb most of the sun’s heat, he says, so it would be difficult to heat the center of the comet enough for that to work.

The best remaining explanation, Jewitt says, is rotational breakup. As the comet nears the sun and its water heats up enough to sublimate, jets of water vapor form and make the core start to spin like a catherine wheel firework. Smaller cores are easier to push around than a larger one, so they spin more easily.

“It just spins faster and faster, until it doesn’t have enough tensile strength to hold together,” Jewitt says. “I’m pretty sure that’s what’s happening.”

That deadly spin speed is actually quite slow. Spinning at about half a meter per second could spell curtains for a kilometer-sized comet, he calculates. “You can walk faster.”

But comets are fragile. If you held a fist-sized comet in front of your face, a sneeze would destroy it, says planetary astronomer Nalin Samarasinha of the Planetary Science Institute in Tucson, who was not involved in the study.

Samarasinha thinks Jewitt’s proposal is convincing. “Even though the sample size is small, I think it is something really happening.” But other things might be destroying these comets too, he says, and Jewitt agrees.

Samarasinha is holding out for more comet observations, which could come when the Vera Rubin Observatory begins surveying the sky in 2023. Jewitt’s idea “is something which can be observationally tested in a decade or two.”