By mounting a water distillation system on the back of a solar cell, engineers have constructed a device that doubles as an energy generator and water purifier.
While the solar cell harvests sunlight for electricity, heat from the solar panel drives evaporation in the water distiller below. That vapor wafts through a porous polystyrene membrane that filters out salt and other contaminants, allowing clean water to condense on the other side. “It doesn’t affect the electricity production by the [solar cell]. And at the same time, it gives you bonus freshwater,” says study coauthor Peng Wang, an engineer at King Abdullah University of Science and Technology in Thuwal, Saudi Arabia. Solar farms that install these two-for-one machines could help meet the increasing global demand for freshwater while cranking out electricity, researchers report online July 9 in Nature Communications.
Using this kind of technology to tackle two big challenges at once “is a great idea,” says Jun Zhou, a materials scientist at Huazhong University of Science and Technology in Wuhan, China, not involved in the work.
In lab experiments under a lamp whose illumination mimics the sun, a prototype device converted about 11 percent of incoming light into electricity. That’s comparable to commercial solar cells, which usually transform some 10 to 20 percent of the sunlight they soak up into usable energy (SN: 8/5/17, p. 22). The researchers tested how well their prototype purified water by feeding saltwater and dirty water laced with heavy metals into the distiller. Based on those experiments, a device about a meter across is estimated to pump out about 1.7 kilograms of clean water per hour.
“It’s really good engineering work,” says George Ni, an engineer who worked on water distillation while a graduate student at MIT, but was not involved in the new study. “The next step is, how are you going to deploy this?” Ni says. “Is it going to be on a roof? If so, how do you get a source of water to it? If it’s going to be [floating] in the ocean, how do you keep it steady” so that it isn’t toppled by waves? Such practical considerations would need to be hammered out for the device to enter real-world use.
The possibility of life … on other planets has stimulated many people’s imaginations…. In the Feb. 9 Nature, James C. G. Walker of Yale University studies the possible parameters of such a search and comes to some pessimistic conclusions.
Update Walker estimated it could take 1,400 to 14 million years to contact E.T. with the available technology. That’s way longer than researchers have spent listening for alien radio signals and scouring the sky with telescopes and satellites (SN: 11/21/20, p. 18).
Despite the silence, scientists have sent their own messages into the void. In 1974, Earth sent a string of binary code from the Arecibo Observatory in Puerto Rico. Years later, arguably the most famous message — the Golden Record — made its way to space aboard NASA spacecraft (SN: 8/20/77, p. 124).
If aliens ever reach out, they may send quantum dispatches, scientists say (SN: 8/13/22, p. 5). Even so, the aliens are likely so far from Earth that their civilization will have collapsed by the time we get the message (SN: 4/14/18, p. 9).
Antarctica’s most vulnerable climate hot spot is a remote and hostile place — a narrow sliver of seawater, beneath a slab of floating ice more than half a kilometer thick. Scientists have finally explored it, and uncovered something surprising.
“The melt rate is much weaker than we would have thought, given how warm the ocean is,” says Peter Davis, an oceanographer at the British Antarctic Survey in Cambridge who was part of the team that drilled a narrow hole into this nook and lowered instruments into it. The finding might seem like good news — but it isn’t, he says. “Despite those low melt rates, we’re still seeing rapid retreat” as the ice vanishes faster than it’s being replenished. Davis and about 20 other scientists conducted this research at Thwaites Glacier, a massive conveyor belt of ice about 120 kilometers wide, which flows off the coastline of West Antarctica. Satellite measurements show that Thwaites is losing ice more quickly than at any time in the last few thousand years (SN: 6/9/22). It has accelerated its flow into the ocean by at least 30 percent since 2000, hemorrhaging over 1,000 cubic kilometers of ice — accounting for roughly half of the ice lost from all of Antarctica.
Much of the current ice loss is driven by warm, salty ocean currents that are destabilizing the glacier at its grounding zone — the crucial foothold, about 500 meters below sea level at the drilling location, where the ice lifts off its bed and floats (SN: 4/9/21).
Now, this first-ever look at the glacier’s underbelly near the grounding zone shows that the ocean is attacking it in previously unknown and troubling ways. When the researchers sent a remote-operated vehicle, or ROV, down the borehole and into the water below, they found that much of the melting is concentrated in places where the glacier is already under mechanical stress — within massive cracks called basal crevasses. These openings slice up into the underside of the ice.
Even a small amount of melting at these weak spots could inflict a disproportionately large amount of structural damage on the glacier, the researchers report in two papers published February 15 in Nature.
These results are “a bit of a surprise,” says Ted Scambos, a glaciologist at the University of Colorado Boulder who was not part of the team. Thwaites and other glaciers are monitored mostly with satellites, which make it appear that thinning and melting happen uniformly under the ice.
As the world continues to warm due to human-caused climate change, the shrinking glacier itself has the potential to raise global sea level by 65 centimeters over a period of centuries. Its collapse would also destabilize the remainder of the West Antarctic Ice Sheet, triggering an eventual three meters of global sea level rise.
With these new results, Scambos says, “we’re seeing in much more detail processes that will be important for modeling” how the glacier responds to future warming, and how quickly sea level will rise.
A cold, thin layer shields parts of Thwaites Glacier’s underside Simply getting these observations “is kind of like a moon shot, or even a Mars shot,” Scambos says. Thwaites, like most of the West Antarctic Ice Sheet, rests on a bed that is hundreds of meters below sea level. The floating front of the glacier, called an ice shelf, extends 15 kilometers out onto the ocean, creating a roof of ice that makes this spot almost entirely inaccessible to humans. “This might represent the pinnacle of exploration” in Antarctica, he says.
These new results stem from a $50 million effort — the International Thwaites Glacier Collaboration — conducted by the United States’ National Science Foundation and United Kingdom’s Natural Environment Research Council. The research team, one of eight funded by that collaboration, landed on the snowy, flat expanse of Thwaites in the final days of 2019.
The researchers used a hot water drill to melt a narrow hole, not much wider than a basketball, through more than 500 meters of ice. Below the ice sat a water column that was only 54 meters thick.
When Davis and his colleagues measured the temperature and salinity of that water, they found that most of it was about 2 degrees Celsius above freezing — potentially warm enough to melt 20 to 40 meters of ice per year. But the underside of the ice seems to be melting at a rate of only 5 meters per year, researchers report in one of the Nature papers. The team calculated the melt rate based on the water’s salinity, which reveals the ratio of seawater, which is salty, to glacial meltwater, which is fresh.
The reason for that slow melt quickly emerged: Just beneath the ice sat a layer of cold, buoyant water, only 2 meters thick, derived from melted ice. “There is pooling of much fresher water at the ice base,” says Davis, and this cold layer shields the ice from warmer water below.
Those measurements provided a snapshot right at the borehole. Several days after the hole was opened, the researchers began a broader exploration of the unmapped ocean cavity under the ice.
Workers winched a skinny, yellow and black cylinder down the borehole. This ROV, called Icefin, was developed over the last seven years by a team of engineers led by Britney Schmidt, a glaciologist at Cornell University. Schmidt and her team piloted the craft from a nearby tent, monitoring instruments while she steered the craft with gentle nudges to the buttons of a PlayStation 4 controller. The smooth, mirrorlike ceiling of ice scrolled silently past on a computer monitor — the live video feed piped up through 3½ kilometers of fiber-optic cable.
As Schmidt guided Icefin about 1.6 kilometers upstream from the borehole, the water column gradually tapered, until less than a meter of water separated the ice from the seafloor below. A few fish and shrimplike crustaceans called amphipods flitted among otherwise barren piles of gravel.
This new section of seafloor — revealed as the ice thins, lifts and floats progressively farther inland — had been exposed “for less than a year,” Schmidt says.
Now and then, Icefin skimmed past a dark, gaping cleft in the icy ceiling, a basal crevasse. Schmidt steered the craft into several of these gaps — often over 100 meters wide — and there, she saw something striking.
Melting of Thwaites’ underbelly is concentrated in deep crevasses The vertical walls of the crevasses were scalloped rather than smooth, suggesting a higher rate of melting than that of the flat icy ceiling. And in these places, the video became blurry as the light refracted through vigorously swirling eddies of salty water and freshwater. That turbulent swirling of warm ocean water and cold meltwater is breaking up the cold layer that insulates the ice, pulling warm, salty water into contact with it, the scientists think.
Schmidt’s team calculated that the walls of the crevasses are melting at rates of up to 43 meters per year, the researchers report in the second Nature paper. The researchers also found rapid melt in other places where the level ceiling of ice is punctuated by short, steep sections.
The greater turbulence and higher melt also appear driven by ocean currents within the crevasses. Each time Schmidt steered Icefin up into a crevasse, the ROV detected streams of water flowing through it, as though the crevasse were an upside-down ditch. These currents moved up to twice as fast as the currents outside of crevasses.
The fact that melting is concentrated in crevasses has huge implications, says Peter Washam, an oceanographer on Schmidt’s team at Cornell: “The ocean is widening these features by melting them faster.”
This could greatly accelerate the years-long process by which some of these cracks propagate hundreds of meters up through the ice until they break through at the top — calving off an iceberg that drifts away. It could cause the floating ice shelf, which presses against an undersea mountain and buttresses the ice behind it, to break apart more quickly than predicted. This, in turn, could cause the glacier to spill ice into the ocean more quickly (SN: 12/13/21). “It’s going to have an impact on the stability of the ice,” Washam says. These new data will improve scientists’ ability to predict the future retreat of Thwaites and other Antarctic glaciers, says Eric Rignot, a glaciologist at NASA’s Jet Propulsion Laboratory in Pasadena, Calif., who assisted the team by providing satellite measurements of changes in the glacier. “You just cannot guess what the water structure might look like in these zones until you observe it,” he says.
But more work is needed to fully understand Thwaites and how it will further change as the world continues to warm. The glacier consists of two side-by-side fast-moving lanes of ice — one moving 3 kilometers per year, the other about 1 kilometer per year. Due to safety concerns, the team visited the slower lane — which still proved extremely challenging. Rignot says that scientists must eventually visit the fast lane, whose upper surface is more cracked up with crevasses — making it even harder to land aircraft and operate field camps.
The research reported today “is a very important step, but it needs to be followed by a second step,” the investigation of the glacier’s fast lane, he says. “It doesn’t matter how hard it is.”
Forget screwdrivers or drills. A stick and a straw make for a great cockatoo tool kit.
Some Goffin’s cockatoos (Cacatua goffiniana) know whether they need to have more than one tool in claw to topple an out-of-reach cashew, researchers report February 10 in Current Biology. By recognizing that two items are necessary to access the snack, the birds join chimpanzees as the only nonhuman animals known to use tools as a set.
The study is a fascinating example of what cockatoos are capable of, says Anne Clark, a behavioral ecologist at Binghamton University in New York, who was not involved in the study. A mental awareness that people often attribute to our close primate relatives can also pop up elsewhere in the animal kingdom. A variety of animals including crows and otters use tools but don’t deploy multiple objects together as a kit (SN: 9/14/16; SN: 3/21/17). Chimpanzees from the Republic of Congo’s Noubalé-Ndoki National Park, on the other hand, recognize the need for both a sharp stick to break into termite mounds and a fishing stick to scoop up an insect feast (SN: 10/19/04).
Researchers knew wild cockatoos could use three different sticks to break open fruit in their native range of Indonesia. But it was unclear whether the birds might recognize the sticks as a set or instead as a chain of single tools that became necessary as new problems arose, says evolutionary biologist Antonio Osuna Mascaró of the University of Veterinary Medicine Vienna.
Osuna Mascaró and colleagues first tested whether the cockatoos could learn to smack loose a cashew placed inside a clear box and behind a thin paper barrier, akin to a chimpanzee’s hunt for termites. Six out of 10 cockatoos reliably knocked the nut out of the box using a pointy stick to poke through the membrane and a plastic straw to fish for the cashew.
Two birds managed the task in less than 35 seconds on their first try. Both — a male named Figaro and a female named Fini — are experienced tool users, Osuna Mascaró says.
Figaro, Fini and three fellow cockatoos were more likely to use both stick and straw only when the box had a paper barrier inside. If the team removed the barrier, the birds selected the straw instead of the stick as their tool.
Even when the birds had to walk or fly to reach the box, the birds brought along both tools every time the box had a barrier. If there was no paper, the cockatoos usually brought only one, a sign the cockatoos recognized when they needed their entire tool kit to swipe a snack. Three of the birds even learned to put the stick inside the straw to carry both at the same time. That made for more efficient transport, meaning the birds didn’t have to make two trips and waste energy. Two birds, Kiwi and Pippin, transported both tools together every time the box had a barrier. Kiwi rarely brought along both tools if there wasn’t paper, and Pippin did so half as often.
Trading off which tools to bring may have to do with strength. After Figaro learned to combine transport, he grabbed both tools in 16 out of 18 trials. That may be because he’s one of the stronger birds in the group, Osuna Mascaró says. For him, grabbing both tools at once isn’t a big deal. Kiwi and Pippin, on the other hand, are weaker than Figaro.
Cockatoos raised in the lab probably display more abilities than a wild bird might use on an average day, Clark says. “Nevertheless, this means they can do it,” she says. “That doesn’t mean that the wild adult male … can do the same thing as Figaro. But he would have probably been capable of doing that had he been raised like Figaro.”
In shallow coastal waters of the Indian and Pacific oceans, a seagrass-scrounging cousin of the manatee is in trouble. Environmental strains like pollution and habitat loss pose a major threat to dugong (Dugong dugon) survival, so much so that in December, the International Union for Conservation of Nature upgraded the species’ extinction risk status to vulnerable. Some populations are now classified as endangered or critically endangered.
If that weren’t bad enough, the sea cows are at risk of losing the protection of a group who has long looked after them: the Torres Strait Islanders. These Indigenous people off the coast of Australia historically have been stewards of the dugong populations there, sustainably hunting the animals and monitoring their numbers. But the Torres Strait Islanders are also threatened, in part because sea levels are rising and encroaching on their communities, and warmer air and sea temperatures are making it difficult for people to live in the region. This situation isn’t unique to dugongs. A global analysis of 385 culturally important plant and animal species found that 68 percent were both biologically vulnerable and at risk of losing their cultural protections, researchers report January 3 in the Proceedings of the National Academy of Sciences.
The findings clearly illustrate that biology shouldn’t be the primary factor in shaping conservation policy, says cultural anthropologist Victoria Reyes-García. When a culture dwindles, the species that are important to that culture are also under threat. To be effective, more conservation efforts need to consider the vulnerability of both the species and the people that have historically cared for them, she says.
“A lot of the people in the conservation arena think we need to separate people from nature,” says Reyes-García, of the Catalan Institution for Research and Advanced Studies and the Autonomous University of Barcelona. But that tactic overlooks the caring relationship many cultural groups – like the Torres Strait Islanders – have with nature, she says.
“Indigenous people, local communities, also other ethnic groups – they are good stewards of their biodiversity,” says Ina Vandebroek, an ethnobotanist at the University of the West Indies at Mona in Kingston, Jamaica, who was not involved in the work. “They have knowledge, deep knowledge, about their environments that we really cannot overlook.”
One way to help shift conservation efforts is to give species a “biocultural status,” which would provide a fuller picture of their vulnerability, Reyes-García and colleagues say. In the study, the team used existing language vitality research to determine a culture’s risk of disappearing: The more a cultural group’s language use declines, the more that culture is threatened. And the more a culture is threatened, the more culturally vulnerable its important species are. Researchers then combined a species’ cultural and biological vulnerability to arrive at its biocultural status. In the dugong’s case, its biocultural status is endangered, meaning it is more at risk than its IUCN categorization suggests.
This intersectional approach to conservation can help species by involving the people that have historically cared for them (SN: 3/2/22). It can also highlight when communities need support to continue their stewardship, Reyes-García says. She hopes this new framework will spark more conservation efforts that recognize local communities’ rights and encourage their participation – leaning into humans’ connection with nature instead of creating more separation (SN: 3/8/22).
Shape-shifting liquid metal robots might not be limited to science fiction anymore.
Miniature machines can switch from solid to liquid and back again to squeeze into tight spaces and perform tasks like soldering a circuit board, researchers report January 25 in Matter.
This phase-shifting property, which can be controlled remotely with a magnetic field, is thanks to the metal gallium. Researchers embedded the metal with magnetic particles to direct the metal’s movements with magnets. This new material could help scientists develop soft, flexible robots that can shimmy through narrow passages and be guided externally. Scientists have been developing magnetically controlled soft robots for years. Most existing materials for these bots are made of either stretchy but solid materials, which can’t pass through the narrowest of spaces, or magnetic liquids, which are fluid but unable to carry heavy objects (SN: 7/18/19).
In the new study, researchers blended both approaches after finding inspiration from nature (SN: 3/3/21). Sea cucumbers, for instance, “can very rapidly and reversibly change their stiffness,” says mechanical engineer Carmel Majidi of Carnegie Mellon University in Pittsburgh. “The challenge for us as engineers is to mimic that in the soft materials systems.”
So the team turned to gallium, a metal that melts at about 30° Celsius — slightly above room temperature. Rather than connecting a heater to a chunk of the metal to change its state, the researchers expose it to a rapidly changing magnetic field to liquefy it. The alternating magnetic field generates electricity within the gallium, causing it to heat up and melt. The material resolidifies when left to cool to room temperature.
Since magnetic particles are sprinkled throughout the gallium, a permanent magnet can drag it around. In solid form, a magnet can move the material at a speed of about 1.5 meters per second. The upgraded gallium can also carry about 10,000 times its weight.
External magnets can still manipulate the liquid form, making it stretch, split and merge. But controlling the fluid’s movement is more challenging, because the particles in the gallium can freely rotate and have unaligned magnetic poles as a result of melting. Because of their various orientations, the particles move in different directions in response to a magnet.
Majidi and colleagues tested their strategy in tiny machines that performed different tasks. In a demonstration straight out of the movie Terminator 2, a toy person escaped a jail cell by melting through the bars and resolidifying in its original form using a mold placed just outside the bars. On the more practical side, one machine removed a small ball from a model human stomach by melting slightly to wrap itself around the foreign object before exiting the organ. But gallium on its own would turn to goo inside a real human body, since the metal is a liquid at body temperature, about 37° C. A few more metals, such as bismuth and tin, would be added to the gallium in biomedical applications to raise the material’s melting point, the authors say. In another demonstration, the material liquefied and rehardened to solder a circuit board. Although this phase-shifting material is a big step in the field, questions remain about its biomedical applications, says biomedical engineer Amir Jafari of the University of North Texas in Denton, who was not involved in the work. One big challenge, he says, is precisely controlling magnetic forces inside the human body that are generated from an external device.
“It’s a compelling tool,” says robotics engineer Nicholas Bira of Harvard University, who was also not involved in the study. But, he adds, scientists who study soft robotics are constantly creating new materials.
“The true innovation to come lies in combining these different innovative materials.”