Cooling stars hint at dark matter particles

CHICAGO — Cooling stars could shine some light on the nature of dark matter.

Certain types of stars are cooling faster than scientists expect. New research suggests that the oddity could hint at the presence of hypothetical particles known as axions. Such particles have also been proposed as a candidate for dark matter, the unknown substance that makes up most of the matter in the universe.

Researchers analyzed previous measurements of white dwarf variable stars, which periodically grow dimmer and brighter at a rate that indicates how fast the star is cooling. For all five stars measured, the cooling was larger than predicted. Likewise, red giant stars have also shown excess cooling.
Considering each result on its own, “each one is not that interesting,” says physicist Maurizio Giannotti of Barry University in Miami Shores, Fla., who presented the result at the International Conference on High Energy Physics on August 4. But taken together, the consistent pattern could indicate something funny is going on.

After evaluating several possible explanations for the cooling of the stars, the researchers concluded that the axion explanation was most likely — barring some more mundane explanation like measurement error. Axions produced within the star stream outward, carrying energy away as they go, and cooling the star.

Although it may be more likely that the phenomenon will eventually be chalked up to measurement errors, it’s important to take note when something doesn’t add up, Giannotti says. “We can’t ignore the small hints.”

Mixing Pokémon Go and driving isn’t safe

Don’t drive and play Pokémon Go.

Catching Pokémon — by flicking cartoon balls at cartoon creatures on the screen of a mobile device — while behind the wheel isn’t safe, a new study suggests. That conclusion is hardly surprising. “Most people would say it’s not a good idea,” says David Strayer, a cognitive neuroscientist at the University of Utah in Salt Lake City not involved in the study. Playing an immersive video game such as Pokémon Go while driving may be even more dangerous than reading a text message while driving, because it pulls attention away from the road longer and with more lasting effects, he says.
Yet alarming numbers of people are doing just that, researchers report online September 16 in JAMA Internal Medicine. A search of Twitter posts that contained “Pokémon” and “driving,” “drives,” “drive” or “car” turned up more than 345,000 tweets during a 10-day period in July. Of those, 113,993 tweets indicated that a driver, passenger or pedestrian was distracted by the augmented-reality game. “This is an incredibly large number,” says study coauthor John Ayers of San Diego State University, and likely an underestimate of the number actually playing the game while driving.

Some 18 percent of those tweets indicated a driver was playing the game; 11 percent came from distracted passengers and 4 percent from pedestrians, Ayers and colleagues found. News reports during that same time period showed that drivers playing Pokémon Go caused 14 car crashes.

Pokémon Go was designed to encourage people to explore their neighborhoods. Scattered PokéStops dispense Pokémon-catching tools, and the virtual creatures pop into existence as a player moves. Players incubate and hatch eggs containing the creatures by covering more ground. Rewards for playing in motion are unique to the game, Ayers says. “When you text, the more you drive or the more you walk you don’t get more messages, but with Pokémon Go, the feedback mechanism fosters dangerous behaviors.”

Passengers trying to “catch them all” may direct drivers to stop, turn or make other dangerous maneuvers, Strayer says. Pedestrians playing the game may walk into traffic.

The game does ask players to confirm they are passengers if it senses too-fast motion. But game makers could build more safety restrictions into the game such as freezing it at driving speeds and keeping it inaccessible for a short while after a car comes to a stop to discourage stoplight play breaks, Ayers suggests.

Birds’ honks filled Late Cretaceous air

Some ancient birds may have sounded like honking ducks.

For the first time, scientists have discovered the fossilized remains of a voice box from the age of the dinosaurs. The sound-making structure, called a syrinx, belonged to Vegavis iaai, a bird that lived 68 million to 66 million years ago, researchers report October 12 in Nature.

“It may be a once-in-a-lifetime discovery,” says evolutionary biologist Patrick O’Connor of Ohio University in Athens, who wrote a commentary in Nature about the fossil. Now, he says, the hunt will be on to find voice boxes in other fossils.
The new work helps fill in the soundscape of the Late Cretaceous Epoch. It could also offer hints about sounds made by all sorts of dinosaurs, says study coauthor Julia Clarke of the University of Texas at Austin.

Unlike in humans, where the larynx lies below the throat, birds’ voice boxes rest inside the chest at the base of the windpipe. Stacked rings of cartilage anchor vibrating membranes that make sound when air whooshes through.

This delicate structure doesn’t typically fossilize. In fact, scientists have previously spotted just a few syrinxes in the fossil record. The oldest known, from a wading bird, was about 50 million years old. Clarke’s team examined that syrinx, which hadn’t been studied before, and the one from V. iaai.
The V. iaaifossil, a partial skeleton discovered on an island off the coast of Antarctica, was removed from a rock about the size of a cantaloupe, Clarke says. Just one small area remained encased in rocky material. Everyone thought that bit was trivial, she says. But “it was within that tiny little section that I saw the syrinx.” Three-dimensional CT scans let her peer within the rock and see the telltale rings of a voice box, a structure roughly half the size of a multivitamin pill. “It was one of the biggest, happiest days of my career,” Clarke says.
Biologist Philip Senter of Fayetteville State University in North Carolina, who was not involved in the study, echoes Clarke’s enthusiasm. “It’s quite exciting to find such a rarely preserved structure,” he says. Seeing it in 3-D will make paleontologists “chortle joyously.”

Comparing the fossil with living birds helped Clarke and her team figure out what sounds the ancient bird might have made. Both the bird’s skeleton and its syrinx suggest it squawked like today’s ducks and geese.

The find also proves that voice boxes from dinosaurs’ time can indeed fossilize. No one has found the structures in nonavian dinosaurs, Clarke says. “That suggests that most dinosaurs may not have had a syrinx.”

Instead, she proposes, dinosaurs like Tyrannosaurus rex and Stegosaurus might have made noises like crocodiles: deep “booming” sounds generated in the back of the mouth.

Cells avoiding suicide may play role in spread of cancer

SAN FRANCISCO — Mostly dead is still partly alive, even for cells on the brink of suicide, new research suggests.

Near-death experiences may play a role in embryo development and help cancer cells that survive chemotherapy spread throughout the body, Denise Montell, a cell biologist at the University of California, Santa Barbara, reported December 6 at the annual meeting of the American Society for Cell Biology.

Montell described a recently discovered process called anastasis that saves cells in the midst of committing a type of cellular suicide known as apoptosis. She and others are only beginning to unravel how the process works. Preliminary results indicate that cells simultaneously kill themselves and hold on to a lifeline in case conditions improve, she said.
Scientists had thought that once a cell going through apoptosis activated an executioner molecule known as a caspase, the cell would surely die, said Claire Walczak, a cell biologist at Indiana University in Bloomington. But cells sometimes call off their attempted suicides at the last moment, even after the executioner starts working, cell biologist Ho Lam Tang discovered in 2008 while a graduate student at the Chinese University of Hong Kong. Tang, now at Johns Hopkins University, named the process anastasis, which in Greek means “rising to life.”

Tang’s discovery that apoptosis is reversible “was really shocking,” said Walczak. “It’s a really nice illustration of how adaptable cells are.”

Tang initially made the discovery by treating an immortal type of cancer cells, called HeLa cells, with a drug that stimulates apoptosis. Once the cells were dying, Tang washed away the drug and some of the cells recovered.

“That experiment is essentially what we do to patients” undergoing chemotherapy treatment, said J. Marie Hardwick, a cell and molecular biologist at Johns Hopkins. She reported with Tang last year in Scientific Reports that fruit fly egg cells can come back from apoptosis and even produce an adult fly.

Cancer patients are given a dose of chemotherapy drugs or radiation that causes cells to commit apoptosis. Then the treatments are stopped for a short time to allow the patient to recover. If cancer cells can come back through anastasis, they may cause a resurgence of the disease, Hardwick suggests. Many of the cells brought back by anastasis have genetic defects. “If you’ve already attempted to die, you’ve got problems,” Hardwick says.
Some cells that survive apoptosis brought on by stresses such as heat or irradiation can go on to divide and “do basically anything a normal cell can do,” Montell said. But unpublished work from her lab indicates that cells brought back to life by anastasis may never go back to their untreated state and may carry permanent memories of their near-death experiences, she said at the cell biology meeting.

Montell and colleagues compared gene activity in untreated cells and ones taken to the brink of death and allowed to recover for varying amounts of time. Cell survival genes are already being made while the cell is preparing to kill itself, her team discovered.

“Dying cells are actually hedging their bets. They’re on the brink of death. They don’t know if things are going to get better or get worse,” Montell said. After recovery, the reanimated cells begin to move and to stimulate blood vessel production. Those are things cells do when healing a wound, but they are also actions taken by tumor cells.

“This would be an extremely unbeneficial response if the cells in question happen to be cancer cells,” Montell said. The findings suggest that stopping anastasis may lead to more effective cancer treatments.

In some other cases, stimulating anastasis may benefit patients, Montell said, such as by saving heart cells after a heart attack or brain cells after a stroke. Those cells don’t divide much so there’s less risk of cancer and recovered cells could restore heart and brain function.

Scientists don’t know exactly how anastasis works — few researchers are even aware it happens — so it may take some time before anyone is able to start or stop anastasis at will, Hardwick said.

Whales feast when hatcheries release salmon

Humpback whales, those innovative foodies, have discovered their own pop-up restaurants.

Migrant humpbacks returning to southeastern Alaska in spring are the first of their kind known to make routine visits to fish hatcheries releasing young salmon into the sea, says marine ecologist Ellen Chenoweth.

The whales are “40 feet long and they’re feeding on fish that are the size of my finger,” says Chenoweth, of the Juneau fisheries center of University of Alaska Fairbanks. For tiny prey to be worthwhile to humpbacks, it’s good to find crowds — such as young salmon streaming out of hatchery nets.

Six years of systematic observations of whales at five hatcheries at Baranof Island reveal a pattern of humpbacks visiting during springtime releases, Chenoweth and her colleagues report June 12 in Royal Society Open Science.

Whale visits to the salmon buffet enhance humpbacks’ reputation for innovation in feeding, Chenoweth says. And since the water is relatively shallow, visits also make it easier to film humpback lunge feeding. More often, studying whale food dives means watching animals surface from the depths to catch their breath before the next exciting plunge. “It’s like going to a basketball game but you can only really watch players on the bench,” Chenoweth says.

Underwater, a humpback opens its jaws and rushes into the mass of prey as its throat balloons out “like a parachute opening,” she says. The toothless whale then filters the mouthful, swooshing it out through dangling fringes of baleen, which snag what’s worth swallowing. In one lunge, a humpback can take in about 27,600 liters of seawater — about 28 metric tons — roughly doubling the whale’s weight.

Cows produce powerful HIV antibodies

An unlikely hero has emerged in the quest to fight HIV: the cow. In a first for any animal, including humans, four cows injected with a type of HIV protein rapidly produced powerful antibodies against the virus, researchers report. Learning how to induce similar antibodies in humans may be key to a successful HIV vaccine.

The antibodies, called broadly neutralizing antibodies, can stop infection from a variety of HIV types. The cows generated these antibodies as soon as 42 days after immunization, the researchers report online July 20 in Nature. For the small percentage of people estimated to develop these antibodies after a natural infection, it can take several years.
The work identifies “a new and much more efficient method to generate broadly active antibodies against HIV,” says immunologist Justin Bailey of Johns Hopkins University School of Medicine, who was not involved in the study.

Making an HIV vaccine has proved difficult because the virus changes all the time. Different strains exist throughout the world, and the virus even mutates within an infected person’s body. Most often, people develop antibodies that are specific to one strain but ineffective against others. HIV vaccines tested so far have not led to the production of broadly neutralizing antibodies.

About 1 percent of HIV-infected people eventually generate broadly neutralizing antibodies that are especially potent and effective against many types of HIV. The development of these antibodies doesn’t seem to help infected people. But when given to monkeys before exposure to a virus similar to HIV, the antibodies prevent infection.

Broadly neutralizing antibodies specific to HIV have a few quirky features, one of which is the presence of a long stretch of amino acids that sticks out from the antibody surface. This protruding part of the antibody binds to a viral site that remains the same between strains, because the virus needs it to gain entry to a cell. HIV’s thick coat of surface sugars makes the viral binding site difficult to access. A longer stretch of amino acids seems to be able to pierce through “and reach in, almost like the long arm of the law,” says Vaughn Smider, a molecular immunologist at the Scripps Research Institute in La Jolla, Calif.

In people infected with HIV who develop broadly neutralizing antibodies, this antibody region — called HCDR3 — has about 30 amino acids, about twice as long as what is usual for human antibodies. Although on the long side for a human, “that’s actually kind of short for a cow,” Smider says.
And so the idea to immunize cows was born. Since cows naturally make longer HCDR3s, Smider explains, perhaps they’d have this sought-after response to HIV.

Smider and colleagues took serum — blood with the cells removed, leaving antibodies behind — from four immunized cows and tested it against different types of HIV virus in a test tube. All of the cows developed broadly neutralizing antibodies. The researchers then tested one cow’s antibodies on an even larger number of virus types. After 381 days, this cow’s antibodies prevented 96 percent of the 117 HIV types from infecting cells in a lab dish. The researchers also isolated an antibody from this cow that had a long HCDR3 of 60 amino acids and stopped infection by 72 percent of the HIV types.

If researchers could induce antibodies with long HCDR3s in humans, “then that could be the basis of getting a vaccine to work,” Smider says. “You need a step before the immunization that helps expand the rare antibodies.” Since cows are so good at making broadly neutralizing antibodies, it also might be possible to turn the cow’s handiwork into drugs for HIV treatment, if bovine antibodies are effective at stopping the virus in other animals, he says.

How horses lost their toes

Horses can leap over high hurdles, gallop at speeds of up to 70 kilometers per hour and haul around up to nearly 1,000 kilograms of body weight — and all with just one big toe on each foot. Now, a new study published August 23 in Proceedings of the Royal Society B helps explain why: Streamlined digits improved horses’ strength and speed.

Along with zebras and donkeys, horses are among the few single-toed creatures in the animal kingdom. Scientists have long suspected that horses’ single, hoofed toes helped them run farther and faster over grasslands, letting them flee predators and find fresh forage. But the hypothesis that having one big toe is better than having several, biomechanically speaking, has never been directly tested.
“This study takes an important step” toward resolving why horses shed digits during their early evolution, says Karen Sears, an evolutionary biologist at UCLA.

Ancient horses had a lot of toes to lose. The dog-sized Hyracotherium, which lived about 55 million years ago, had four toes on its front feet, and three on its back feet. Merychippus, which lived about 10 million years ago, resembled a modern horse but had three toes, including one long middle digit with a protective, toenail-like hoof at the end. The only surviving horse genus, single-toed Equus, emerged about 5 million years ago.

“If you look closely, you can still see the vestigial remnants” of a bone that would have led to a side toe on a modern horse’s foot, says Brianna McHorse, a paleontologist at Harvard University.

To retrace the evolution of horse toes, McHorse and colleagues used CT scans to capture the internal structure of fossilized foot bones from 12 kinds of extinct horses. They also analyzed the feet of the closely related Central American tapir, which are oddly toed like Hyracotherium. A computer simulation then let researchers estimate how the bones would respond to the stresses of locomotion for each species, such as jumping over a hurdle or accelerating into a gallop. Then the scientists compared what happened when they applied the animal’s full body weight to just to the central toe, or spread it among multiple toes.

Side toes significantly increased the early horses’ ability to bear their own weight, the team found — the central toe of early horses would have fractured without help from other toes. As the era of modern horses approached and side toes dropped away, however, the middle toe bone grew thicker and hollower. These changes made the single-toed foot nearly as sturdy — resistant to bending and compression — as multiple toes.
As horses’ legs grew longer, the extra toes at the end of the limb would have been “like wearing weights around your ankles,” McHorse says. Shedding those toes could have helped early horses save energy, allowing them to travel farther and faster, she says. The study can’t determine what changes came first — whether bulking up the middle toe drove the loss of side toes, or the loss of side toes caused changes in the middle toe.

Horses aren’t the only animals to have lost toes or fingers to the evolutionary chopping block. “Digits have been lost many times in animals that walk, run, hop and fly,” says Kim Cooper, a biologist at the University of California, San Diego. Modeling how forces of locomotion act on an animal’s bones — living or extinct — could help scientists understand why.

An interstellar asteroid might have just been spotted for the first time

Astronomers may have just spotted the first asteroid caught visiting the solar system from another star.

The Pan-STARRS 1 telescope in Hawaii discovered the object, initially dubbed A/2017 U1 and later named ‘Oumuamua, on October 18. More observations from other telescopes around the world suggest the object’s trajectory is at an unusually steep angle to the plane on which all the planets lie, and it does not orbit the sun. A/2017 U1’s slingshot route suggests it is a recent visitor to the solar system — and is now on its way out again. The discovery was announced in a bulletin published October 25 by the International Astronomical Union’s Minor Planet Center.
All asteroids previously seen come from within the solar system and circle the sun. Even comets, which come from a distant reservoir of icy rocks in the solar system called the Oort cloud and can have highly titled orbits, still orbit the sun.

Astronomers first pegged the object as a comet thanks to its elongated path, but additional telescope observations October 25 indicate it’s more likely that A/2017 U1 is an asteroid. Those observations revealed that the object looked like a single, sharp point of light, suggesting it is not a comet, which would have an extended icy halo. The asteroid, which is probably no more than 400 meters across, zoomed into the solar system at 25.5 kilometers per second and is now fleeing at 44 km/s.

The new data also supported the wacky trajectory, suggesting the object truly is a visitor from beyond. “It’s now looking very promising,” says planetary scientist Michele Bannister of Queen’s University Belfast in Northern Ireland, although she would still like to get more data to be sure. Astronomers are already planning to measure the colors in the asteroid’s reflected light to figure out what it’s made of, a clue to its origins.