Half of the Milky Way comes from other galaxies

Galaxies may grow by swiping gas from their neighbors.

New simulations suggest that nearly half the matter in the Milky Way may have been siphoned from the gas of other galaxies. That gas provides the raw material that galaxies use to build their bulk. The finding, scheduled to appear in the Monthly Notices of the Royal Astronomical Society, reveals a new, unexpected way for galaxies to acquire matter and could give clues to how they evolve.
“These simulations show a huge amount of interaction among galaxies, a huge dance that’s going on,” says astronomer Romeel Davé of the University of Edinburgh. That dance, and the subsequent exchange of atoms, could be what establishes a galaxy’s character — whether it’s small or big, elliptical or spiral, quiet or bursting with star formation. If the simulation results are confirmed with observations, it could be a major advancement in understanding galaxy formation, Davé says.

It makes sense that much of the material in one galaxy actually came from other galaxies, says study coauthor Claude-André Faucher-Giguère, a theoretical astrophysicist at Northwestern University in Evanston, Ill. “Still, the result was really unexpected,” he says.

Astronomers thought galaxies got their matter in two main ways. First, atoms clumped together to form stars and then galaxies, not long after the Big Bang about 13.8 billion years ago. Then some of those atoms were eventually ejected by supernovas but rained back onto the same galaxy, recycling the gas again and again.

The new simulations showed a third way galaxies could score gas. Powerful supernova explosions would eject atoms, in the form of gas, far from their home galaxies into intergalactic space. Those atoms would then travel through space, pushed toward other galaxies by galactic winds that move at several hundred kilometers per second. When the particles neared a galaxy’s gravitational pull, they would get sucked in, where they would serve as the basis for stars, planets, dust and other material in their new galactic home. Still, this exchange of atoms is extremely difficult to spot in space because the gas atoms, don’t give off light like stars do.
Faucher-Giguère and colleagues spotted the exchange in computer simulations that show how galaxies formed just after the Big Bang and how they have evolved over time. The team tracked gas atoms as they moved through the model universe, formed stars and then were ejected from galaxies as those stars exploded.

In the simulations, up to half of the atoms in large galaxies were pulled in from other galaxies. Because more massive galaxies have more gravity, they tended to pull atoms from the ejected material of small galaxies. The exchange appears to take billions of years as atoms travel the vast space between galaxies, the team notes.

“It’s that not surprising to see a galaxy kick out matter, which is then pulled in by other galaxies,” Davé says. What is surprising, he says, is the amount of material that’s transferred. Before seeing the simulations, he would have guessed that about 5 percent of gas was transferred among galaxies this way. “To see that it is up to 50 percent is pretty remarkable,” he says.

Already, astronomers are searching for evidence of this material-swapping behavior among galaxies. Faucher-Giguère and colleagues, working with researchers using the Hubble Space Telescope, hope to observe intergalactic transfer of gas among galaxies soon.

The first look at how archaea package their DNA reveals they’re a lot like us

Single-celled microbes may have taught plants and animals how to pack their genetic baggage.

Archaea, a type of single-celled life-form similar to bacteria, keep their DNA wrapped around proteins much in the same way as more complex organisms, researchers report in the Aug. 11 Science. This finding provides new insight into the evolutionary origins of the DNA-packing process and the secret to archaea’s hardiness, which enables some to live in acid, boiling water or other extreme environments.
All eukaryotes, including plants and animals, store their genetic material in cell compartments called nuclei. Such organisms cram meters of genetic material into the tiny nuclei by wrapping strands of DNA around clusters of proteins called histones (SN: 1/10/15, p. 32). “It doesn’t really matter which eukaryote you look at, whether it’s amoebas or plants or humans or fish or insects or anything,” says coauthor John Reeve, a microbiologist at Ohio State University. “They all have exactly the same structure.”

Unlike bacteria, some archaea also contain histones, but researchers weren’t sure whether these microbes spool DNA around the protein bobbins the way eukaryotes do. So Reeve and colleagues used a method called X-ray crystallography to discern, for the first time, the precise shape of archaea DNA bound to histones.

The researchers saw that archaea DNA coils around the histones, similar to the way it does in eukaryotes. “It’s a big deal actually seeing this,” says Steven Henikoff, a molecular biologist at the Fred Hutchinson Cancer Research Center in Seattle who was not involved in the work. The resemblance between archaea and eukaryote DNA wrapping means that the first organism that used this storage scheme was an ancestor of both modern eukaryotes and archaea, the researchers conclude.

But the way archaea DNA twists around histones isn’t identical to the coils of DNA seen in eukaryotes. In eukaryotes, a strand of DNA loops twice around a cluster of eight histones to create what’s called a nucleosome, and connects many of these nucleosomes like beads on a string. Archaea DNA string together bundles of proteins, too. But while eukaryotes always tether eight-protein clumps, archaea DNA can spiral around stacks of many more histones to create rod-shaped structures of various lengths. “So it’s not as uniform as in eukaryotes,” says coauthor Karolin Luger, a biophysicist and Howard Hughes Medical Institute investigator at the University of Colorado Boulder.

Researchers tested the importance of that rodlike architecture by tampering with the histone-DNA structures of some archaea and then observing how these mutant archaea fared in different conditions. “We tried to mimic some real-life situations that some of these organisms could get into,” Luger says.
For instance, some archaea that live in volcanic vents that emit sulfurous gases sometimes get spewed out and have to survive sans sulfur. Archaea with normal histone-DNA shapes can handle that kind of midlife crisis. But when researchers cut their mutant microbes off sulfur, the microorganisms’ growth was stunted. These microbes may not have been able to adapt to sulfur deprivation as well as their wild counterparts “because they can’t unpackage their DNA as readily if the structure has been changed,” Reeve says.

Henikoff calls it “a pretty cool experiment.” It showed that the archaea’s particular DNA-histone architecture was “biologically relevant, not just a novelty,” he says.

Eclipse watchers will go after the biggest solar mystery: Why is the corona so hot?

A total solar eclipse shines a light on the sun’s elusive atmosphere. When the moon blocks the sun, it’s finally possible to see how this diffuse cloud of plasma, called the corona, is magnetically sculpted into beautiful loops. The material there is about a trillionth the density of the solar surface. From its delicate and diaphanous appearance, you might expect the corona to be where the sun goes to cool off.

That couldn’t be more wrong. The corona is a mysteriously sizzling inferno where the temperature jumps from a mere few thousand degrees to several million degrees. Why?
“It’s one of the longest unanswered questions in all of solar physics,” says Paul Bryans of the High Altitude Observatory at the National Center for Atmospheric Research in Boulder, Colo. “There are a bunch of different ideas about what’s going on there, but it’s still highly debated.” Data collected during the Aug. 21 solar eclipse may bring scientists closer to settling that debate.

The sun simmers at about 5,500° Celsius at its visible surface, the photosphere. But the gas just above the photosphere is heated to about 10,000° C. Then in the corona, the temperature makes an abrupt jump to several million degrees.

“It’s counterintuitive that as you move away from a heat source, it gets warmer,” Bryans says. The corona’s diffuseness makes its heat even stranger — the most basic ways to heat a material rely on particles crashing into each other, but the corona is too tenuous for that to work.

An eclipse first brought this abnormal arrangement to light. German astronomer Walter Grotrian observed spectral lines — the fingerprints of elements that show up when light is split into its component wavelengths — emitted by the corona during a total solar eclipse in 1869.

Astronomers at first assumed those lines were due to a new element they dubbed coronium. But Grotrian realized that iron atoms stripped of several of their electrons by the heat were responsible. These iron lines in the corona are still used to measure its temperature: The more electrons lost, the hotter the material in the corona (SN Online: 6/16/17).
Such extreme temperatures have something to do with the corona’s magnetic field, which is probably where all that energy is stored. Once the energy is there, the corona has a hard time radiating it away, so it builds up. Most of the ways that materials release energy — stripping electrons from atoms, accelerating those electrons so they release X-rays and ultraviolet particles of light — are already maxed out in the corona.
“We know there’s energy coming in, and it’s hard to get it out unless you get very hot,” says Amir Caspi of the Southwest Research Institute in Boulder, Colo. “What we don’t understand is how that energy gets into the corona in the first place.”

Physicists have several ideas. Maybe loops of magnetic field lines in the corona vibrate like guitar strings, heating things up, sort of like how a microwave oven heats food. Maybe the magnetic anchors of those loops on the sun’s surface braid and twist the magnetic field above them, dumping in energy that is then continually radiated away like the heating element in a toaster.

Or maybe tiny explosions called nanoflares or jets called spicules carry energy away from the photosphere and into the corona. The formation of new coronal loops that connect to existing ones could dump in enough extra energy to heat the plasma up.

During the solar eclipse, dozens of groups of scientists across the country will deploy telescopes equipped with filters to pick out polarized light, infrared light or those electron-deprived iron atoms in search of answers. Bryans and his colleagues will be on a mountaintop near Casper, Wyo., in the path of totality. There, the team will take images at a fast clip in both visual and infrared wavelengths to map how the corona changes as the moon moves across the sun. (I will be in Wyoming with this team on the day of the eclipse and will be sharing more about how the experiments went.)

“We can look at how things change as we move from the surface up into the atmosphere,” Bryans says. “How that changes is tied to understanding how the corona is heated.”

Probably all of those mechanisms scientists have thought up contribute to the corona’s extreme heat. It’s difficult to declare just one the most important. But ultimately, the solar eclipse is the best chance scientists have to test them. It’s the only time the corona is the star of the solar show.