Despite misuses, statistics still has solid foundation

In many realms of science today, “statistical wisdom” seems to be in short supply. Misuse of statistics in scientific research has contributed substantially to the widespread “reproducibility crisis” afflicting many fields (SN: 4/2/16, p. 8; SN: 1/24/15, p. 20). Recently the American Statistical Association produced a list of principles warning against multiple misbeliefs about drawing conclusions from statistical tests. Statistician Stephen Stigler has now issued a reminder that there is some wisdom in the science of statistics. He identifes seven “pillars” that collectively provide a foundation for understanding the scope and depth of statistical reasoning.
Stigler’s pillars include methods for measuring or representing aggregation (measures, such as averages, that represent a collection of data); information (quantifying it and assessing how it changes); likelihood (coping with probabilities); intercomparison (involving measures of variation within datasets); regression (analyzing data to draw inferences); design (of experiments, emphasizing randomization); and residual (identifying the unexplained “leftovers” and comparing scientific models).

His approach is to identify the historical origins of these seven key pillars, providing some idea of what they are and how they can assist in making sense of numerical data. His explanations are engaging but not thorough (it’s not a textbook), and while mostly accessible, his writing often assumes a nontrivial level of mathematical knowledge. You’ll have to cope with expressions such as L(Θ)=L(Θ)|Χ and Cov(L,W)=E{Cov(L,W|S)}+Cov(E{L|S}, E{W|S}) every now and then.

While Stigler defends statistics from some of the criticisms against it — noting, for instance, that specific misuses should not be grounds for condemning the generic enterprise — he acknowledges that some issues are still a source of concern, especially in the new era of “big data” (SN: 2/7/15, p. 22). Using common statistical tests when many comparisons are made at once, or applying tests at multiple stages of an experimental process, introduces problems that the seven pillars do not accommodate. Stigler notes that there is room, therefore, for an eighth pillar. “The pillar may well exist,” he writes, “but no overall structure has yet attracted the general assent needed for recognition.”

Antibiotics in cattle leave their mark in dung

Overuse of antibiotics in livestock can spread drug-resistant microbes — via farm workers or even breezy weather. But there’s more than one reason stay upwind of drugged cattle.

Dung beetles (Aphodius fossor) make their living on cattle dung pats, which are rich in nutritious microbes. To investigate the effects of cattle antibiotics on this smaller scale, Tobin Hammer of the University of Colorado at Boulder and his colleagues studied the tiny communities around tetracycline-dosed and undosed cows. Compared with untreated cows’ dung, microbes in dung produced by treated cows were less diverse and dominated by a genus with documented resistance, the researchers report May 25 in the Proceedings of the Royal Society B.

Beetles typically reduce methane gas wafting off dung, but pats from treated cows showed a 1.8-fold increase in methane output. How this might figure into greater cattle methane production remains to be studied, but Hammer and company speculate that the antibiotics may wipe out the bacterial competition for microbial methane factories.

Tiny plastics cause big problems for perch, lab study finds

Editor’s note: On May 3, 2017, Science retracted the study described in this article. Based on findings from a review board at Uppsala University, Science cites three reasons for pulling the study: The experiments lacked ethical approval, the original data do not appear in the paper and questions emerged about experimental methods.

Microscopic pieces of plastic rule Earth’s oceans, with numbers in the billions — possibly trillions. These tiny plastic rafts provide homes to microbes (SN: 2/20/16, p. 20), but their ecological effects remain murky.
In a lab at Uppsala University in Sweden, researchers exposed European perch (Perca fluviatilis) larvae to a microplastic called polystyrene to see how they might react. The exposure triggered a slew of potentially negative effects: Fewer eggs hatched, growth rates dropped and feeding habits changed, with some larvae preferring polystyrene to more nutritious food options. Exposed larvae were also sluggish in responding to scents that signal approaching predators in the wild, the team reports in the June 3 Science.

European perch, a keystone species in the Baltic Sea, have recently experienced a population dive. Because the drop has been linked to juvenile feeding issues, the researchers argue that microplastics could be to blame.

Sounds from gunshots may help solve crimes

The surveillance video shows a peaceful city streetscape: People walking, cars driving, birds chirping.

“Then, abruptly, there’s the sound of gunfire,” said electrical engineer Robert Maher. “A big bang followed by another bang.”

Witnesses saw two shooters facing off, a few meters apart — one aiming north, the other south. But no one knew who shot first. That’s where Maher comes in. His specialty is gunshot acoustics, and he’s helping shore up the science behind a relatively new forensics field.
In the case of the two shooters, surveillance cameras missed the action, but the sounds told a story that was loud and clear.

A distinctive echo followed the first gunshot but not the second. The first gunshot’s sound probably bounced off a big building to the north, causing the echo, Maher concluded. So the first person to shoot was the person facing north, he reported May 24 in Salt Lake City at a meeting of the Acoustical Society of America.

Maher has analyzed the booming echoes of gunshots in dozens of cases, but he’s also studying the millisecond-long sound of a bullet blasting out of the barrel — and finding differences from one type of gun to the next.

He and colleagues at Montana State University in Bozeman erected a semicircular aluminum frame studded with 12 microphones, evenly spaced and raised 3 meters off the ground. When someone standing on a raised platform in the center of the contraption shoots a gun — a 12-gauge shotgun, for example, or a .38 Special handgun — the microphones pick up the sound.

“Each of the different firearms has a distinctive signal,” he says. His team is building a database of sounds made by 20 different guns. To the ear, the gunshots seem alike, but Maher can chart out differences in the sound waves.
One day, investigators might be able to use the information to figure out what kind of guns were fired at a crime scene. Of course, Maher says, most crime scene recordings aren’t high quality — they often come from cellphones or surveillance systems. But his team will compare those recordings with ones made in his outdoor “lab” and try to figure out which aspects of crime scene audio they can analyze.

Maher, a music lover who plays the cello and sings in a choir, didn’t intend this career. “If I were really talented at music, that’s what I’d be doing full time,” he says. Instead, he has applied his skills in math and science to problems involving sound: studying humans’ contribution to noise in national parks, for example, and now, gunshot acoustics.

For him, it’s “a nice way to bridge the gap between the science and the sound.”

Post-stroke shifts in gut bacteria could cause additional brain injury

When mice have a stroke, their gut reaction can amp up brain damage.

A series of new experiments reveals a surprising back-and-forth between the brain and the gut in the aftermath of a stroke. In mice, this dickering includes changes to the gut microbial population that ultimately lead to even more inflammation in the brain.

There is much work to be done to determine whether the results apply to humans. But the research, published in the July 13 Journal of Neuroscience, hints that poop pills laden with healthy microbes could one day be part of post-stroke therapy.
The work also highlights a connection between gut microbes and brain function that scientists are only just beginning to understand,says Ted Dinan of the Microbiome Institute at the University College Cork, Ireland. There’s growing evidence that gut microbes can influence how people experience stress or depression, for example (SN: 4/2/16, p. 23).

“It’s a fascinating study” says Dinan, who was not involved with the work. “It raises almost as many questions as it answers, which is what good studies do.”

Following a stroke, the mouse gut becomes temporarily paralyzed, leading to a shift in the microbial community, neurologist Arthur Liesz of the Institute for Stroke and Dementia Research in Munich and colleagues found. This altered, less diverse microbial ecosystem appears to interact with immune system cells called T cells that reside in the gut. These T cells can either dampen inflammation or dial it up, leading to more damage, says Liesz. Whether the T cells further damage the brain after a stroke rather than soothe it seems to be determined by the immune system cells’ interaction with the gut microbes.

Transplanting microbe-laden fecal matter from healthy mice into mice who had strokes curbed brain damage, the researchers found. But transplanting fecal matter from mice that had had strokes into stroke-free mice spurred a fourfold increase in immune cells that exacerbate inflammation in the brain.

Learning more about this interaction between the gut’s immune cell and microbial populations will be key to developing therapies, says Liesz. “We basically have no clue what’s going on there.”

Anesthesia steals consciousness in stages

The brain doesn’t really go out like a light when anesthesia kicks in. Nor does neural activity gradually dim, a new study in monkeys reveals. Rather, intermittent flickers of brain activity appear as the effects of an anesthetic take hold.

Some synchronized networks of brain activity fall out of step as the monkeys gradually drift from wakefulness, the study showed. But those networks resynchronized when deep unconsciousness set in, researchers reported in the July 20 Journal of Neuroscience.
That the two networks behave so differently during the drifting-off stage is surprising, says study coauthor Yumiko Ishizawa of Harvard Medical School and Massachusetts General Hospital. It isn’t clear what exactly is going on, she says, except that the anesthetic’s effects are a lot more complex than previously thought.

Most studies examining the how anesthesia works use electroencephalograms, or EEGs, which record brain activity using electrodes on the scalp. The new study offers unprecedented surveillance by eavesdropping via electrodes implanted inside macaque monkeys’ brains. This new view provides clues to how the brain loses and gains consciousness.

“It’s a very detailed description of something we know very little about,” says cognitive neuroscientist Tristan Bekinschtein of the University of Cambridge, who was not involved with the work. Although the study is elegant, it isn’t clear what to make of the findings, he says. “These are early days.”

Researchers from Massachusetts General, Harvard and MIT recorded the activity of small populations of nerve cells in two interconnected brain networks: one that deals with incoming sensory information and one involved with some kinds of movement, and with merging different kinds of information. Before the anesthetic propofol kicked in, brain activity in the two regions was similar and synchronized. But as the monkeys drifted off, the networks dropped out of sync, even though each networks’ own nerve cells kept working together.

Around the moment when the monkeys went unconscious, there was a surge in a particular kind of nerve cell activity in the movement network, followed by a different surge in the sensory network about two minutes later. The two networks then began to synchronize again, becoming more in lockstep as the anesthetic state deepened.

How Houdini tadpoles escape certain death

Tree frog tadpoles are the ultimate escape artists. To avoid becoming breakfast, the embryos of red-eyed tree frogs (Agalychnis callidryas) prematurely hatch and wriggle away from a snake’s jaws in mere seconds, as seen above. Embryos also use this maneuver to flee from flooding, deadly fungi, egg-eating wasps and other threats. Adding to the drama, red-eyed tree frogs lay their eggs on the undersides of leaves that hang a few inches to several feet above ponds. So the swimmers perform this feat suspended on a leaf, breaking free in midair and cannonballing into the water below.
High-speed video, captured by Kristina Cohen of Boston University and her colleagues, of unhatched eggs collected from Panamanian ponds shows that the embryos’ trick plays out in three stages. First, upon sensing a threat, an embryo starts shaking and, in some cases, gaping its mouth. Next, a hole forms. (The movement helps tear open the hole, but an embryo’s snout probably secretes a chemical that actually does the breaking.) Finally, the embryo thrashes its body about as if swimming and slips out of the egg.
Orientation is key to a hasty escape, the team reports in the June 15 Journal of Experimental Biology. An embryo must keep its snout aligned with the hole for a speedy exit. In observations of 62 embryos, the getaway took between six and 50 seconds — 20.6 seconds on average.

Some tadpoles may be leaping out of a cauldron into a fire. “There’s a trade-off,” Cohen says. “They may have escaped the threat of a snake, but earlier hatchlings fare worse against some aquatic predators.”

Cooling stars hint at dark matter particles

CHICAGO — Cooling stars could shine some light on the nature of dark matter.

Certain types of stars are cooling faster than scientists expect. New research suggests that the oddity could hint at the presence of hypothetical particles known as axions. Such particles have also been proposed as a candidate for dark matter, the unknown substance that makes up most of the matter in the universe.

Researchers analyzed previous measurements of white dwarf variable stars, which periodically grow dimmer and brighter at a rate that indicates how fast the star is cooling. For all five stars measured, the cooling was larger than predicted. Likewise, red giant stars have also shown excess cooling.
Considering each result on its own, “each one is not that interesting,” says physicist Maurizio Giannotti of Barry University in Miami Shores, Fla., who presented the result at the International Conference on High Energy Physics on August 4. But taken together, the consistent pattern could indicate something funny is going on.

After evaluating several possible explanations for the cooling of the stars, the researchers concluded that the axion explanation was most likely — barring some more mundane explanation like measurement error. Axions produced within the star stream outward, carrying energy away as they go, and cooling the star.

Although it may be more likely that the phenomenon will eventually be chalked up to measurement errors, it’s important to take note when something doesn’t add up, Giannotti says. “We can’t ignore the small hints.”

Female fish have a fail-safe for surprise sperm attacks

Some guys really know how to kill a moment. Among Mediterranean fish called ocellated wrasse (Symphodus ocellatus), single males sneak up on mating pairs in their nest and release a flood of sperm in an effort to fertilize some of the female’s eggs. But female fish may safeguard against such skullduggery through their ovarian fluid, gooey film that covers fish eggs.

Suzanne Alonzo, a biologist at Yale University, and her colleagues exposed sperm from both types of males to ovarian fluid from female ocellated wrasse in the lab. Nesting males release speedier sperm in lower numbers (about a million per spawn), while sneaking males release a lot of slower sperm (about four million per spawn). Experiments showed that ovarian fluid enhanced sperm velocity and motility and favored speed over volume. Thus, the fluid gives a female’s chosen mate an edge in the race to the egg, the researchers report August 16 in Nature Communications.

While methods to thwart unwanted sperm are common in species that fertilize within the body, evidence from Chinook salmon previously hinted that external fertilizers don’t have that luxury. However, these new results suggest otherwise: Some female fish retain a level of control over who fathers their offspring even after laying their eggs.

Bird nest riddle: Which shape came first?

WASHINGTON — To human thinking, songbird nests now seem to have evolved backwards: The most distant ancestor probably built complex, roofed structures. Simple open-top cup nests came later.

More than 70 percent of songbird species today build some form of that iconic open cup, evolutionary biologist Jordan Price said August 18 at the North American Ornithological Conference. Yet looking at patterns of nest style across recent bird family trees convinced him that the widespread cup style probably isn’t just a leftover from deepest bird origins.
Old bird lineages thought to have branched out near the base of the avian family tree tend to have plentiful roof-builders. Price, of St. Mary’s College of Maryland, and coauthor Simon Griffith of Macquarie University in Sydney reconstructed probable nest styles for various branching points in the tree. That reconstruction suggests that open cups showed up independently four times among songbirds, such as in bowerbirds and honeyeaters, the scientists conclude. Also, here and there, some of the earlier cup builders reverted to roofs.

Price said he began musing about nest history while reveling in Australia’s birds during a sabbatical with Griffith. Evolutionary biologists have proposed that the broader Australasia region was probably the starting point for the rise of songbirds. Price said that it isn’t clear what drove a switch from protective roofs to what looks like the quick and dirty alternative of open cups.